Prevalence of Puroindoline Genes and Their Impact on Quality Traits in A Diverse Germplasm of Wheat Genotypes

Mariam Khurshid, Munir Ahmad


Grain hardness is an imperative attribute that determines the end-use quality of wheat. Variation in grain hardness is usually controlled by Puroindoline (pin-a and pin-b) genes located on the 5D chromosome. The study was aimed to reveal different mutations in Puroindoline genes utilizing the STS-marker approach and their association with important quality attributes in 100 hexaploid wheat genotypes (96 from Pakistan and 4 from CIMMYT). Overall, seven puroidoline genes were identified. Among them Pina-d1b(null) (85%) was most common while Pinb-d1i (1%) and Pinb-d1ab (1%) were most rare gene. Out of 100 genotypes, 97 had hard texture either with single or double mutant pin-genes, while three had a soft texture with wild type (Pinad1a/Pinb-d1a) pin-genes. All four quality attributes revealed a vast deviation among germplasm, while their correlation analysis revealed the highest association (r=0.71) between thousand-grain weight and protein content. In addition, three out of four quality traits, i.e. thousandgrain weight, SDS-sedimentation value and protein content, showed the highest mean values for double mutant (Pina-d1b/Pinb-d1b) followed by single mutant, i.e. Pina-d1b. The present study facilitates breeders for varietal selection (hard or soft) according to end-use quality and offers valuable information for improving wheat quality.


End-use quality; Grain hardness; SDS-sedimentation value; STS-marker approach

Full Text:



AACC. (2000). Approved methods of the AACC (10th ed.). St. Paul, MN: American Association of Cereal Chemists. Retrieved from website

Ahmed, M., & Fayyaz-ul-Hassan. (2015). Response of spring wheat (Triticum aestivum L.) quality traits and yield to sowing date. PLOS ONE, 10(4), e0126097. DOI

Al-Saleh, A., & Brennan, C. S. (2012). Bread wheat quality: Some physical, chemical and rheological characteristics of Syrian and English bread wheat samples. Foods, 1(1), 3–17. DOI

Aoun, M., Carter, A. H., Ward, B. P., & Morris, C. F. (2021). Genome-wide association mapping of the ‘super-soft’ kernel texture in white winter wheat. Theoretical and Applied Genetics, 134(8), 2547–2559. DOI

Awan, S. I., Ahmad, S. D., Ali, M. A., Ahmed, M. S., & Rao, A. (2015). Use of multivariate analysis in determining characteristics for grain yield selection in wheat. Sarhad Journal of Agriculture, 31(2), 139–150. DOI

Bhave, M., & Morris, C. F. (2008). Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Molecular Biology, 66(3), 221–231. DOI

Chen, F., Zhang, F.-Y., Xia, X.-C., Dong, Z.-D., & Cui, D.-Q. (2012). Distribution of puroindoline alleles in bread wheat cultivars of the Yellow and Huai valley of China and discovery of a novel puroindoline a allele without PINA protein. Molecular Breeding, 29(2), 371–378. DOI

Chen, F., Zhang, F., Cheng, X., Morris, C., Xu, H., Dong, Z., … Cui, D. (2010). Association of Puroindoline b-B2 variants with grain traits, yield components and flag leaf size in bread wheat (Triticum aestivum L.) varieties of the Yellow and Huai Valleys of China. Journal of Cereal Science, 52(2), 247–253. DOI

Chugh, V., Kaur, K., Singh, D., Kumar, V., Kaur, H., & Dhaliwal, H. S. (2015). Molecular characterization of diverse wheat germplasm for puroindoline proteins and their antimicrobial activity. Turkish Journal of Biology, 39(3), 359–369. DOI

Drikvand, R., Bihamta, M. R., Najafian, G., & Ebrahimi, A. (2013). Kernel quality association and path analysis in bread wheat. International Journal of Biology, 5(3), 73–79. DOI

Ferrari, M. C., Clerici, M. T. P. S., & Chang, Y. K. (2014). A comparative study among methods used for wheat flour analysis and for measurements of gluten properties using the Wheat Gluten Quality Analyser (WGQA). Food Science and Technology, 34(2), 235–242. DOI

Garibyan, L., & Avashia, N. (2013). Polymerase chain reaction. The Journal of Investigative Dermatology, 133(3), 1–4. DOI

Giroux, M. J., & Morris, C. F. (1997). A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theoretical and Applied Genetics, 95(5), 857–864. DOI

Henry, R. J. (2021). Genomics of grain quality in cereals. Crop Breeding and Applied Biotechnology, 21(spe), 1–6. DOI

Huertas-García, A. B., Castellano, L., Guzmán, C., & Alvarez, J. B. (2021). Potential use of wild einkorn wheat for wheat grain quality improvement: Evaluation and characterization of Glu-1, Wx and Ha Loci. Agronomy, 11(5), 816. DOI

Ibba, M. I., Kiszonas, A. M., Guzmán, C., & Morris, C. F. (2017). Definition of the low molecular weight glutenin subunit gene family members in a set of standard bread wheat (Triticum aestivum L.) varieties. Journal of Cereal Science, 74, 263–271. DOI

Ikeda, T. M., Cong, H., Suzuki, T., & Takata, K. (2010). Identification of new Pina null mutations among Asian common wheat cultivars. Journal of Cereal Science, 51(3), 235–237. DOI

Khan, S., Memon, A. N., Deverajani, B. R., & Baloch, S. (2015). Physicochemical characteristics of wheat grain and their relation with proteins in different varieties cultivated in Sindh. Sindh University Research Journal, 47(44), 839–842. Retrieved from website

Ma, D., Zhang, Y., Xia, X., Morris, C. F., & He, Z. (2009). Milling and Chinese raw white noodle qualities of common wheat near-isogenic lines differing in puroindoline b alleles. Journal of Cereal Science, 50(1), 126–130. DOI

Ma, X., Sajjad, M., Wang, J., Yang, W., Sun, J., Li, X., … Liu, D. (2017). Diversity, distribution of Puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm. BMC Plant Biology, 17(1), 158. DOI

Maryami, Z., Azimi, M. R., Guzman, C., Dreisigacker, S., & Najafian, G. (2020). Puroindoline (Pina-D1 and Pinb-D1) and waxy (Wx-1) genes in Iranian bread wheat (Triticum aestivum L.) landraces. Biotechnology & Biotechnological Equipment, 34(1), 1019–1027. DOI

Mohammadi, M., Mehrazar, E., Izadi-Darbandi, A., & Najafian, G. (2013). Genotype diversity of puroindoline genes (Pina-D1 and Pinb-D1) in bread wheat cultivars developed in Iran and CIMMYT. Journal of Crop Improvement, 27(4), 361–375. DOI

Morris, C. F., Anderson, J. A., King, G. E., Bettge, A. D., Garland-Campbell, K., Allan, R. E., … Beecher, B. S. (2011). Characterization of a unique “super soft” kernel trait in wheat. Cereal Chemistry, 88(6), 576–583. DOI

Mu, P. Y., Wang, L., Chen, F., He, Z. H., Han, X. N., Xu, H. J., & Xia, X. C. (2008). Identification of the allelic variation of puroindoline alleles in CIMMYT common winter wheat. Journal of Triticeae Crops, 28(1). Retrieved from website

Nirmal, R. C., Furtado, A., Wrigley, C., & Henry, R. J. (2016). Influence of gene expression on hardness in wheat. PloS One, 11(10), e0164746. DOI

Nucia, A., Okoń, S., Tomczyńska-Mleko, M., & Nawrocka, A. (2021). Molecular and physical characterization of grain hardness in European spring common wheat (Triticum aestivum L.). 3 Biotech, 11(7), 345. DOI

Pasha, I., Anjum, F. M., & Morris, C. F. (2010). Grain hardness: A major determinant of wheat quality. Food Science and Technology International, 16(6), 511–522. DOI

Pauly, A., Pareyt, B., Fierens, E., & Delcour, J. A. (2013). Wheat (Triticum aestivum L. and T. turgidum L. ssp. durum) kernel hardness: II. Implications for end-product quality and role of puroindolines therein. Comprehensive Reviews in Food Science and Food Safety, 12(4), 427–438. DOI

Presinszká, M., Štiasna, K., Vyhnánek, T., Trojan, V., Mrkvicová, E., Hřivna, L., & Havel, L. (2016). Identification of alleles of puroindoline genes and their effect on wheat (Triticum aestivum L.) grain texture. Food Technology and Biotechnology, 54(1), 103–107. DOI

Przyborowski, M., Gasparis, S., Kała, M., Orczyk, W., & Nadolska-Orczyk, A. (2020). The variability of puroindoline-encoding alleles and their influence on grain hardness in modern wheat cultivars cultivated in Poland, breeding lines and polish old landraces (Triticum aestivum L.). Agronomy, 10(8), 1075. DOI

Qamar, Z. U., Bansal, U. K., Dong, C. M., Alfred, R. L., Bhave, M., & Bariana, H. S. (2014). Detection of puroindoline (Pina-D1 and Pinb-D1) allelic variation in wheat landraces. Journal of Cereal Science, 60(3), 610–616. DOI

Ribeiro, M., Rodríguez-Quijano, M., Giraldo, P., Pinto, L., Vázquez, J. F., Carrillo, J. M., & Igrejas, G. (2017). Effect of allelic variation at glutenin and puroindoline loci on bread-making quality: favorable combinatons occur in less toxic varieties of wheat for celiac patients. European Food Research and Technology, 243(5), 743–752. DOI

Shaaf, S., Sharma, R., Baloch, F. S., Badaeva, E. D., Knüpffer, H., Kilian, B., & Özkan, H. (2016). The grain hardness locus characterized in a diverse wheat panel (Triticum aestivum L.) adapted to the central part of the Fertile Crescent: genetic diversity, haplotype structure, and phylogeny. Molecular Genetics and Genomics, 291(3), 1259–1275. DOI

Takata, K., Ikeda, T. M., Yanaka, M., & Ishikawa, N. (2008). Comparison of the effects of puroindoline genotypes on grain and flour properties using near isogenic lines. In The 11th International Wheat Genetics Symposium Proceedings (pp. 1–3). Retrieved from PDF

Tehseen, S., Anjum, F. M., Pasha, I., Khan, M. I., & Saeed, F. (2014). Suitability of spring wheat varieties for the production of best quality pizza. Journal of Food Science and Technology, 51(8), 1517–1524. DOI

Wang, D., Zhang, K., Dong, L., Dong, Z., Li, Y., Hussain, A., & Zhai, H. (2018). Molecular genetic and genomic analysis of wheat milling and enduse traits in China: Progress and perspectives. The Crop Journal, 6(1), 68–81. DOI


Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.