Stimulating Effect of Salicylic Acid in the In Vitro and In Vivo Culture of Vanilla (Vanilla planifolia Jacks.)

Luis C. Ortega-Macareno, Lourdes G. Iglesias-Andreu

Abstract


Vanilla planifolia Jacks., is the only commercially cultivated orchid for its compound vanillin. This crop has had serious production limitations due to its susceptibility to Fusarium oxysporum f. sp. vanilla (Fov). Salicylic acid (SA) regulates growth and development processes and induces resistance in plants. Our study evaluated its effect on the growth and development of V. planifolia seedlings grown in vitro and in vivo. A completely randomized design was used with seedlings obtained from nodal segments (2-3 cm long) grown in MS medium with different concentrations of SA (0, 0.25, 5, and 7.5 μmol). An experimental design with four SA concentration treatments (0, 0.25, 0.5, and 1 mmol) and 12 replications was used to evaluate the effects of SA on greenhousegrown plantlets. During four weeks, the number of shoots, length, thickness, number of leaves, number and length roots, chlorophyll and carotene content for both conditions were observed. We found the 7.5 μmol and 1 mmol SA stimulated the growth and development of vanilla plantlets grown both in vivo and in vitro. SA does not affect the content of photosynthetic pigments under any growth conditions.


Keywords


Fungal pathogen; Orchid; Plant growth regulators; Resistance

Full Text:

PDF

References


Bayat, H., Alirezaie, M., & Neamati, H. (2012). Impact of exogenous salicylic acid on growth and ornamental characteristics of calendula (Calendula officinalis L.) under salinity stress. Journal of Stress Physiology & Biochemistry, 8(1), 258–267. Retrieved from website

Borbolla Pérez, V., Iglesias Andreu, L. G., Escalante Manzano, E. A., Martínez Castillo, J., Ortiz García, M. M., & Octavio Aguilar, P. (2016). Molecular and microclimatic characterization of two plantations of Vanilla planifolia (Jacks ex Andrews) with divergent backgrounds of premature fruit abortion. Scientia Horticulturae, 212, 240–250. DOI

Castro-Bobadilla, G., Martínez, A. J., Martínez, M. L., & García-Franco, J. G. (2011). Application of located irrigation system to increase the retention of fruit of Vanilla planifolia in the Totonacapan, Veracruz, México. Agrociencia, 45(3), 281–291.

Cruz-Cruz, C., González-Arnao, M., & Engelmann, F. (2013). Biotechnology and conservation of plant biodiversity. Resources, 2(2), 73–95. DOI

Dong, C.-J., Liu, X.-Y., Xie, L.-L., Wang, L.-L., & Shang, Q.-M. (2020). Salicylic acid regulates adventitious root formation via competitive inhibition of the auxin conjugation enzyme CsGH3.5 in cucumber hypocotyls. Planta, 252(5), 75. DOI

Farjadi-Shakiba, M., Naderib, R., & Boojarc, M. M. A. (2012). Effect of Salicylic acid application on morphological, physiological and biochemical characteristics of Cyclamen persicum Miller. Annals of Biological Research, 3(12), 5631–5639. Retrieved from website

Gantait, S., & Kundu, S. (2017). In vitro biotechnological approaches on Vanilla planifolia Andrews: advancements and opportunities. Acta Physiologiae Plantarum, 39(9), 196. DOI

García, K. L. T., Hernández, H. R., Salazar, R. I. M., & Galarza Rincón, E. (2019). Distribución de Vanilla planifolia Jacks. ex Andrews y acciones para su conservación en la Huasteca Potosina. Revista Mexicana de Ciencias Forestales, 10(55). DOI

Gharbi, E., Lutts, S., Dailly, H., & Quinet, M. (2018). Comparison between the impacts of two different modes of salicylic acid application on tomato (Solanum lycopersicum) responses to salinity. Plant Signaling & Behavior, 13(5), e1469361. DOI

Hao, Q., Wang, W., Han, X., Wu, J., Lyu, B., Chen, F., … Fu, D. (2018). Isochorismate‐based salicylic acid biosynthesis confers basal resistance to Fusarium graminearum in barley. Molecular Plant Pathology, 19(8), 1995–2010. DOI

Hernández-Hernández, J. (2010). Vanilla diseases. In Handbook of Vanilla Science and Technology (pp. 26–39). Oxford, UK: Wiley-Blackwell. DOI

Kendon, J. P., Rajaovelona, L., Sandford, H., Fang, R., Bell, J., & Sarasan, V. (2017). Collecting near mature and immature orchid seeds for ex situ conservation: ‘in vitro collecting’ as a case study. Botanical Studies, 58(1), 34. DOI

Khotimah, K., Sulistyaningsih, E., & Wibowo, A. (2017). In vitro induced resistance of Fusarium wilt disease (Fusarium oxysporum f.sp. cepae) by salicylic acid in shallot CV ‘Bima Brebes.’ Ilmu Pertanian (Agricultural Science), 2(1), 001. DOI

Koyyappurath, S., Atuahiva, T., Le Guen, R., Batina, H., Le Squin, S., Gautheron, N., … Grisoni, M. (2016). Fusarium oxysporum f. sp. radicis-vanillae is the causal agent of root and stem rot of vanilla. Plant Pathology, 65(4), 612–625. DOI

Miclea, I., Suhani, A., Zahan, M., & Bunea, A. (2020). Effect of jasmonic acid and salicylic acid on growth and biochemical composition of in-vitro-propagated Lavandula angustifolia Mill. Agronomy, 10(11), 1722. DOI

Pinaria, A. G., Laurence, M. H., Burgess, L. W., & Liew, E. C. Y. (2015). Phylogeny and origin of Fusarium oxysporum f. sp. vanillae in Indonesia. Plant Pathology, 64(6), 1358–1365. DOI

Poór, P., & Tari, I. (2012). Regulation of stomatal movement and photosynthetic activity in guard cells of tomato abaxial epidermal peels by salicylic acid. Functional Plant Biology, 39(12), 1028. DOI

Ramírez-Mosqueda, M. A., Iglesias-Andreu, L. G., Teixeira da Silva, J. A., Luna-Rodríguez, M., Noa-Carrazana, J. C., Bautista-Aguilar, J. R., … Murguía-González, J. (2019). In vitro selection of vanilla plants resistant to Fusarium oxysporum f. sp. vanillae. Acta Physiologiae Plantarum, 41(3), 40. DOI

Tucuch Haas, C. J., Alcántar González, G., & Larqué Saavedra, A. (2015). Effect of salicylic acid on root growth and total biomass of wheat seedlings. Terra Latinoamericana, 33(1), 63–68




DOI: http://doi.org/10.17503/agrivita.v44i1.3003

Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.