Land Suitability Analysis for Agricultural Land Use using Hyperscale DEM Data
Abstract
Keywords
Full Text:
PDFReferences
Aarthi, R., & Sivakumar, D. (2020). An enhanced agricultural data mining technique for dynamic soil texture prediction. Procedia Computer Science, 171, 2770–2778. https://doi.org/10.1016/J.PROCS.2020.04.301
Adi, S. H., Grunwald, S., Tafakresnanto, C., & Sosiawan, H. (2021). Modeling paddy field soil conditions in East Java, Indonesia. Soil Security, 5, 100025. https://doi.org/10.1016/J.SOISEC.2021.100025
Akpoti, K., Kabo-bah, A. T., & Zwart, S. J. (2019). Agricultural land suitability analysis: State-of-the-art and outlooks for integration of climate change analysis. Agricultural Systems, 173, 172–208. https://doi.org/10.1016/J.AGSY.2019.02.013
AL-Taani, A., Al-husban, Y., & Farhan, I. (2020). Land suitability evaluation for agricultural use using GIS and remote sensing techniques: The case study of Ma’an Governorate, Jordan. The Egyptian Journal of Remote Sensing and Space Science, 24(1), 109-117. https://doi.org/10.1016/J.EJRS.2020.01.001
Amsili, J. P., van Es, H. M., & Schindelbeck, R. R. (2021). Cropping system and soil texture shape soil health outcomes and scoring functions. Soil Security, 4, 100012. https://doi.org/10.1016/J.SOISEC.2021.100012
Barman, U., & Choudhury, R. D. (2020). Soil texture classification using multi class support vector machine. Information Processing in Agriculture, 7(2), 318–332. https://doi.org/10.1016/J.INPA.2019.08.001
Behrens, T., Schmidt, K., Ramirez-Lopez, L., Gallant, J., Zhu, A. X., & Scholten, T. (2014). Hyper-scale digital soil mapping and soil formation analysis. Geoderma, 213, 578–588. https://doi.org/10.1016/j.geoderma.2013.07.031
Bring, J. (1994). How to standardize regression coefficients. American Statistician, 48(3), 209–213. https://doi.org/10.1080/00031305.1994.10476059
da Silva Chagas, C., de Carvalho Junior, W., Bhering, S. B., & Calderano Filho, B. (2016). Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions. CATENA, 139, 232–240. https://doi.org/10.1016/j.catena.2016.01.001
Erb, I. (2020). Partial correlations in compositional data analysis. Applied Computing and Geosciences, 6, 100026. https://doi.org/10.1016/J.ACAGS.2020.100026
Fang, H. (2021). Effect of soil conservation measures and slope on runoff, soil, TN, and TP losses from cultivated lands in Northern China. Ecological Indicators, 126, 107677. https://doi.org/10.1016/J.ECOLIND.2021.107677
FAO. (2007). Land evaluation: Towards a revised framework. In Land and Water Discussion Paper No. 6. Rome, IT: Food and Agriculture Organization of the United Nations. Retrieved from https://www.fao.org/nr/lman/docs/lman_070601_en.pdf
Florinsky, I. V. (2008). Global lineaments: Application of digital terrain modelling. In Z. Qiming, L. Brian, & T. Guo-an (Eds.), Advances in Digital Terrain Analysis. Lecture Notes in Geoinformation and Cartography (pp. 365–382). Springer. https://doi.org/10.1007/978-3-540-77800-4_20
Florinsky, I. V. (2012). Digital terrain analysis in soil science and geology. Academic Press. https://doi.org/10.1016/C2010-0-65718-X
Florinsky, I. V., Eilers, R. G., Manning, G. R., & Fuller, L. G. (2002). Prediction of soil properties by digital terrain modelling. Environmental Modelling & Software, 17(3), 295–311. https://doi.org/10.1016/S1364-8152(01)00067-6
Goto, H. (2021). Three-dimensionally consistent contour-based network rendered from digital terrain model data. Geomorphology, 395, 107969. https://doi.org/10.1016/J.GEOMORPH.2021.107969
Grunwald, S. (2009). Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 152(3–4), 195–207. https://doi.org/10.1016/J.GEODERMA.2009.06.003
Lilja, H., & Nevalainen, R. (2006). Developing a digital soil map for Finland. In P. Lagacherie, A. B. McBratney, & M. Voltz (Eds.), Developments in Soil Science Vol. 31, Digital Soil Mapping: An Introductory Perspective (pp. 67–74). Elsevier. https://doi.org/10.1016/S0166-2481(06)31005-7
Ma, Y., Minasny, B., Malone, B. P., & Mcbratney, A. B. (2019). Pedology and digital soil mapping (DSM). European Journal of Soil Science, 70(2), 216–235. https://doi.org/https://doi.org/10.1111/ejss.12790
MacMillan, R. A., Pettapiece, W. W., Nolan, S. C., & Goddard, T. W. (2000). A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets and Systems, 113(1), 81–109. https://doi.org/10.1016/S0165-0114(99)00014-7
Malone, B., Stockmann, U., Glover, M., McLachlan, G., Engelhardt, S., & Tuomi, S. (2022). Digital soil survey and mapping underpinning inherent and dynamic soil attribute condition assessments. Soil Security, 6, 100048. https://doi.org/10.1016/J.SOISEC.2022.100048
Mazahreh, S., Bsoul, M., & Hamoor, D. A. (2019). GIS approach for assessment of land suitability for different land use alternatives in semi arid environment in Jordan: Case study (Al Gadeer Alabyad-Mafraq). Information Processing in Agriculture, 6(1), 91–108. https://doi.org/10.1016/J.INPA.2018.08.004
McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4
Ostovari, Y., Honarbakhsh, A., Sangoony, H., Zolfaghari, F., Maleki, K., & Ingram, B. (2019). GIS and multi-criteria decision-making analysis assessment of land suitability for rapeseed farming in calcareous soils of semi-arid regions. Ecological Indicators, 103, 479–487. https://doi.org/10.1016/J.ECOLIND.2019.04.051
Pilevar, A. R., Matinfar, H. R., Sohrabi, A., & Sarmadian, F. (2020). Integrated fuzzy, AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat and maize farming. Ecological Indicators, 110, 105887. https://doi.org/10.1016/J.ECOLIND.2019.105887
Ritung, S., Nugroho, K., Mulyani, A., & Suryani, E. (2011). Petunjuk teknis evaluasi lahan untuk komoditas pertanian (Edisi Revisi). Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. Retrieved from https://bbsdlp.litbang.pertanian.go.id/ind/index.php?option=com_phocadownload&view=category&download=20:evaluasi-lahan-untuk-komoditas-pertanian&id=7:petunjuk-teknis&Itemid=451
Searle, R., McBratney, A., Grundy, M., Kidd, D., Malone, B., Arrouays, D., … Andrews, K. (2021). Digital soil mapping and assessment for Australia and beyond: A propitious future. Geoderma Regional, 24, e00359. https://doi.org/10.1016/J.GEODRS.2021.E00359
Shary, P. A. (1995). Land surface in gravity points classification by a complete system of curvatures. Mathematical Geology, 27(3), 373–390. https://doi.org/10.1007/BF02084608
Sinshaw, B. G., Belete, A. M., Mekonen, B. M., Wubetu, T. G., Anley, T. L., Alamneh, W. D., … Mossie Birhanu, M. (2021). Watershed-based soil erosion and sediment yield modeling in the Rib watershed of the Upper Blue Nile Basin, Ethiopia. Energy Nexus, 3, 100023. https://doi.org/10.1016/J.NEXUS.2021.100023
Tashayo, B., Honarbakhsh, A., Akbari, M., & Eftekhari, M. (2020). Land suitability assessment for maize farming using a GIS-AHP method for a semi- arid region, Iran. Journal of the Saudi Society of Agricultural Sciences, 19(5), 332–338. https://doi.org/10.1016/J.JSSAS.2020.03.003
Tercan, E., & Dereli, M. A. (2020). Development of a land suitability model for citrus cultivation using GIS and multi-criteria assessment techniques in Antalya province of Turkey. Ecological Indicators, 117, 106549. https://doi.org/10.1016/J.ECOLIND.2020.106549
Yalew, S. G., van Griensven, A., Mul, M. L., & van der Zaag, P. (2016). Land suitability analysis for agriculture in the Abbay basin using remote sensing, GIS and AHP techniques. Modeling Earth Systems and Environment, 2(2), 101. https://doi.org/10.1007/s40808-016-0167-x
Zhang, X., Song, J., Wang, Y., Deng, W., & Liu, Y. (2021). Effects of land use on slope runoff and soil loss in the Loess Plateau of China: A meta-analysis. Science of The Total Environment, 755, 142418. https://doi.org/10.1016/J.SCITOTENV.2020.142418
DOI: http://doi.org/10.17503/agrivita.v44i2.2985
Copyright (c) 2022 The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.