Purification and Identification of an Antifungal Protein from an Isolated Fungus with Antagonism to Colletotrichum gloeosporioides MC9
Abstract
Colletotrichum gloeosporioides is the cause of anthracnose disease on mango. This disease becomes more damaging because it economically affects the harvested fruit during the postharvest season. In this research, eight isolates are isolated from the soil of a mango plantation. One of the isolates shows antifungal activity against C. gloeosporioides MC9. This isolate is identified as Penicillium citrinum isolate S1 based on the phylogenetic analysis of ribosomal rRNA sequence. From the culture of this isolate, extracellular filtrates are collected and evaluated for their antifungal activity. The mycelial growth of C. gloeosporioides is significantly inhibited by the culture supernatant of P. citrinum isolate S1. The culture filtrate is used to purify the antifungal protein using ammonium sulfate and ultrafiltration methods. Results show that the antifungal protein was estimated at around 40 kDa molecular weight when separated on a 10% Sodium dodecyl sulfate-polyacrylamide gel. After nine days of incubation, this antifungal protein’s inhibition effect with a concentration of 0.94 mg/ml remained 63.6% against C. gloeosporioides. The LCMS result showed that the antifungal protein belongs to the L-asparaginase superfamily. Based on this result, the antifungal protein produced by P. citrinum S1 has the potential to control mango anthracnose disease caused by C. gloeosporioides.
Keywords
Full Text:
PDFReferences
Ahmed, H., Strub, C., Hilarie, F., & Schorr-Galindo, S. (2015). First report: Penicillium adametzioides, A potential biocontrol agent for ochratoxin-producing fungus in grapes, resulting from natural product pre-harvest treatment. Food Control, 51, 23-30. DOI
Akem, C. N. (2006). Mango anthracnose disease: present status and future research priorities. Plant Pathology Journal, 5(3), 266-273. DOI
Arauz, L. F. (2000). Mango anthracnose: Economic impact and current option for integrated management. Plant Disease, 84(6), 600-611. DOI
Atanasova-Pancevska, N., & Lovski, D. K. (2018). Isolation, characterization and formulation of antagonistic bacteria against fungal plant pathogens. AGROFOR International Journal, 3(3), 80-89. DOI
Begum, M. M., Sariah, M., Zainal Abidin, M. A., Puteh, A. B., & Rahman, M. A. (2008). Antagonistic potential of selected fungal and bacterial biocontrol agents against Colletotrichum truncatum of soybean seeds. Pertanika Journal of Tropical Agriculture Science, 31(1), 45-53. Retrieved from PDF
Boland, G. J., & Hunter, J. E. (1988). Influence of Alternaria alternata and Cladosporium cladosporioides on white mold of bean caused by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 10, 172 – 177. DOI
Breiman, A., & Barash, I. (1976). Charactherization of L-Asparagine transport systems in Stemphylium botryosum. Journal of Bacteriology, 127(3), 1127–1135. DOI
Butt, T. M., & Copping, L. G. (2000). Fungal biological control agents. Pesticide Outlook, 11, 186-191. DOI
Cardenar, M. E., Cruz, M. C., Poeta, M. D., Chung, N., Perfect, J. R., & Heitman, J. (1999). Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action. Clinical Microbiology Reviews, 12(4), 583. DOI
Chen, S. C-A., Lewis, R. E., & Kontoyiannis, D. P. (2011). Direct effects of non-antifungal agents used in cancer chemotherapy and organ transplantation on the development and virulence of Candida and Aspergillus species. Virulence, 2(4), 280-295. DOI
Chen, J., Zhou, L., Din, I. U., Aafat, Y., Li, Q., Wang, J., ... Lin, W. (2021). Antagonistic activity of Trichoderma spp. against Fusarium oxysporum in rhizosphere of Radix pseudostellariae triggers the expression of host defense genes and improves its growth under long-term monoculture system. Frontiers in Microbiology, 2021, 579920. DOI
Chen, Z., Ao, J., Yang, W., Jiao, L., Zheng, T., & Chen, X. (2013). Purification and characterization of a novel antifungal protein secreted by Penicillium chrysogenum from an arctic sediment. Journal of Applied Microbiology Biotechnology, 97, 10381–10390. DOI
Cook, R. J. (1993). Making greater use of introduced microorganisms for biological control of plant pathogens. Annual Review of Phytopathology, 31, 53-80. DOI
Darsini, N. N., Sudana, I. M., Suprapta, D. N., & Nyana, I. D. N. (2017). Exploring antagonistic candidate fungi for controling pathogenic fungi (Colletotricum gloeosporioides) causing anthracnose disease in Kintamani siam orange plants (Citrus nobillis Lour Var. Hass). International Journal Advance Science Engineering Information Technology, 7(1), 269-275. Retrieved from website
Elkhayat, E. S., & Goda, A. M. (2017). Antifungal and cytotoxic constituents from the endophytic fungus Penicillium sp. Bulletin of Faculty of Pharmacy, 55(1), 85–89. DOI
Green, A., & Hughes, W. L. (1955). Protein fractionation on the basic of solubility in aqueus solution of salts and organic solvents. Methods in Enzymology, 1, 67-90. DOI
Gulati, R., Saxena, R. K., & Gupta, R. (1997). A rapid plate assay for screening L-Asparaginase producing micro-organism. Letters in Applied Microbiology, 24(1), 23-26. DOI
Hao, J.-J., Ye, J.-Q., Yang, Q., Gong, Z.-Z., Liu, W.-Y. & Wang, E.-D. (2000). A silent antifungal protein (AFP)-like gene lacking two introns in the mould Trichoderma viride. Biochimica et Biophysica Acta, 1475(2), 119-124. DOI
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species – opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56. DOI
Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10(4), 273-290. DOI
Hossain, Md M., Sultana, F., Kubota, M., Koyama, H., & Hyakumachi, M. (2007). The plant growth promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defens signals. Plants and Cell Physiology, 48(12), 1724-1736. DOI
Khokhar, I., Mukhtar, I., & Mushtaq, S. (2011). Antifungal effect of Penicillium metabolite against some fungi. Journal of Phytopatology and Plant Protection, 44(14), 1347-1351. DOI
Kubicek, C. P., & Harman, G. E. (1998). Trichoderma & Gliclocaldium, Vol. 1: Basic biology, taxonomy and genetics. London: CRC Press. DOI
Lamy, B., & Davies, J. (1991). Isolation and nucleotide sequence of the Aspergillus restrictus gene coding for the ribonucleolytic toxin restriction and its expression in Aspergillus nidulans: the leader sequence protects producing strains from suicide. Nucleic Acids Research, 19, 1001-1006. DOI
Lo, C.-T. (1998). General mechanisms of action of microbial biocontrol agents. Plant Pathology Bulletin, 7, 155-166. PDF
Marx, F. (2004). Small, basic antifungal proteins secreted from filamentous ascomycetes: a comparative study regarding expression, structure, function and potential application. Applied Microbiology and Biotechnology, 65, 133-142. DOI
Naseby, D. C, Pascual, J. A., & Lynch, J. M. (2000). Effect of biocontrol isolates of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. Journal of Applied Microbiology, 88(1), 161–169. DOI
Nelson, S. C. (2008). Mango anthracnose (Colletotricum gloeosporioides). Plant Disease, 48, 1-9. Retrieved from PDF
Newhook, F. J. (1951). Microbiological control of Botrytis cinerea Pers. II Antagonism by fungi and actinomycetes. Annals of Applied Biology, 35, 185-200. DOI
Nicoletti, R., De Stefano, M., De Stefano, S., Trincone, A., & Marziano, F. (2004). Antagonism against Rhizoctonia solani and fungitoxic metabolite production by some Penicillium isolates. Mycophatologia, 158, 465-474. DOI
Patro, K. K. R., & Gupta, N. (2014). Impact of cultural and nutritional conditions on L-Asparaginase production by Penicillium citrinum Thom. International Journal of Pharma Medicine and Biological Sciences, 3(3), 114-120. Retrieved from PDF
Pitt, J. L. (1979). The genus Penicillium and its telemorphic states Eupenicillium and Talaromyces. London: Academic. Retrieved from PDF
Raj, J. E. E. A., Baskaran, A., Kumar, S. D., Sureka, I., Velmurugan, M., & Sathiyamurthy, K. (2016). Isolation and screening of L-asparaginase and L-glutaminase producing bacteria and their antimicrobial potential from environmental sources. IOSR Journal of Pharmacy and Biological Sciences, 11(3), 47-53. Retrieved from website
Rungjindamai, N. (2016). Isolation and evaluation of biocontrol agents in controlling anthracnose disease of mango in Thailand. Journal of Plant Protection Research, 56(3), 306-311. DOI
Santos, A., Navascues, E., Bravo, E., & Marquina, D. (2011). Ustilago maydis killer toxin as a new tool for the biocontrol of the wine spoilage yeast Brettanomyces bruxellensis. International Journal of Food Microbiology, 145(1), 147-154. DOI
Selitrennikoff, C. P. (2001). Antifungal proteins. Applied and Enviromental Microbiology, 67(7), 2883–2894. DOI
Sempere, F., & Santamarina, M. P. (2008). Suppression of Nigrospora oryzae (Berk. & Broome) Petch by an aggressive mycoparasite and competitor, Penicillium oxalicum Currie & Thom. International Journal of Food Microbiology, 122(1-2), 35-43. DOI
Silfarohana, R., Wibowo, A., Asiani, N., Haqqa, Z. A., Sugiyanto, M., & Sriherwanto, C. (2022). Inhibitory activity of Trichoderma harzianum against putatively pathogenic fungus on rodent TUBER (Typhonium flagelliforme) plant. Jurnal Bioteknologi & Biosains Indonesia, 9(1), 1–10. DOI
Sonderegger, C., Galgóczy, L., Garrigues, S., Fizil, Á., Borics, A., Manzanares, P., … Marx, F. (2016). A Penicillium chrysogenum‑based expression system for the production of small,cysteine‑rich antifungal proteins for structural and functional analyses. Microbial Cell Factories, 15, 192. DOI
Tao, J., Ginsberg, I., Banerjee, N., Held, W., Koltin, Y., & Bruenn, J. A. (1990). Ustilago maydis KP6 killer toxin: structure, expression in Saccharomyces cerevisiae, and relationship to other cellular toxins. Molecular Cellular Biology, 10(4), 1373-1381. DOI
Tiwari, K. L., Jadhav, S. K., & Ashish, K. (2011). Morphological and molecular study of different Penicillium species. Middle - East Journal of Scientific Research, 7(2), 203-210. Retrieved from PDF
Tóth, L., Boros, É., Poór, P., Ördög, A., Kele, Z., Váradi, G., ... Galgóczy, L. (2020a). The potential use of the Penicillium chrysogenum antifungal protein PAF, the designed variant PAFopt and its γ-core peptide Pγopt in plant protection. Microbiology and Biotechnology, 13, 1403–1414. DOI
Tóth, L., Váradi, G., Boros, É., Borics, A., Ficze, H., Nagy, I., ... Galgóczy, L. (2020b). Biofungicidal potential of Neosartorya (Aspergillus) fscheri antifungal protein NFAP and novel synthetic γ-core peptides. Frontiers in Microbiology, 11, 820. DOI
Tóth, L., Poór, P., Ördög, A., Váradi, G., Farkas, A., Papp, C., ... Galgóczy, L. (2022). The combination of Neosartorya (Aspergillus) fscheri antifungal proteins with rationally designed γ core peptide derivatives is efective for plant and crop protection. BioControl, 67, 249–262. DOI
Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., … Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies In Mycology, 78(1), 343–371. DOI
Wen, C., Guo, W., & Chen, X. (2014). Purification and identification of a novel antifungal protein secreted by Penicillium citrinum from the Southwest Indian Ocean. Journal of Microbiology and Biotechnology, 24(10), 1337–1345. DOI
Wood, R. K. S. (1951). The control of diseases of lettuce by use of antagonistic microorganisms: The control of Botrytis cinerea Pers. Annals of Applied Biology, 38, 203-216. DOI
DOI: http://doi.org/10.17503/agrivita.v44i2.2966
Copyright (c) 2022 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.