Influence of Rhizobacteria on Soil Ion Concentration under Paddy Cultivation
Abstract
Keywords
Full Text:
PDFReferences
Anli, M., Baslam, M., Tahiri, A., Raklami, A., Symanczik, S., Boutasknit, A., ... Meddich, A. (2020). Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. Frontiers in Plant Science, 11, 516818. DOI
Atieno, M., Herrmann, L., Nguyen, H. T., Phan, H. T., Nguyen, N. K., Srean, P., ... Lesueura, D. (2020). Assessment of biofertilizer use for sustainable agriculture in the Great Mekong Region. Journal of Environmental Management, 275, 111300. DOI
Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13(3), 1140. DOI
Bordoloi, N., Baruah, K. K., Bhattacharyya, P., & Gupta, P. K. (2019). Impact of nitrogen fertilization and tillage practices on nitrous oxide emission from a summer rice ecosystem. Archives of Agronomy and Soil Science, 65(11), 1493-1506. DOI
Cao, X. C., Li, X. Y., Zhu, L. F., Zhang, J. H., Yu, S. M., Wu, L. H., & Jin, Q. Y. (2016). Effects of water management on rice nitrogen utilization: A review. Acta Ecologica Sinica, 36(13), 3882-3890. DOI
Cao, Y., & Yin, B. (2015). Effects of integrated highefficiency practice versus conventional practice on rice yield and N fate. Agriculture, Ecosystems & Environment, 202, 1-7. DOI
Cao, Y., Sun, H., Liu, Y., Fu, Z., Chen, G., Zou, G., & Zhou, S. (2017). Reducing N losses through surface runoff from rice-wheat rotation by improving fertilizer management. Environmental Science and Pollution Research, 24(5), 4841- 4850. DOI
Goswami, D., Thakker, J. N., & Dhandhukia, P.C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food and Agriculture 2(1), 1127500 DOI
Goswami, M., & Deka, S. (2020). Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: a review. Pedosphere, 30, 40-61. DOI
Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H.-S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131-140. DOI
Haghshenas, H., & Malidarreh, A. G. (2021). Response of yield and yield components of released rice cultivars from 1990-2010 to nitrogen rates. Central Asian Journal of Plant Science Innovation, 1, 23-31. DOI
Konkolewska, A., Piechalak, A., Ciszewska, L., AntosKrzemińska, N., Skrzypczak, T., Hanć, A., ... Małecka, A. (2020). Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn, Pb, Cd). Environmental Science and Pollution Research, 27, 13809-13825. DOI
Kumar, Akhilesh., & Verma, J. P. (2019). The role of microbes to improve crop productivity and soil health. In V. Achal & A. Mukherjee (Eds.), Ecological Wisdom Inspired Restoration Engineering (pp. 249–265). Singapore: Springer. DOI
Kumar, Arvind. (2016). Phosphate solubilizing bacteria in agriculture biotechnology : Diversity, mechanism and their role in plant growth and crop yield. International Journal of Advanced Research, 4(4), 116–124. Retrieved from website
Kumar, M., & Ashraf, S. (2017). Role of Trichoderma spp. as a biocontrol agent of fungal plant pathogens. In V. Kumar, M. Kumar, S. Sharma, & R. Prasad (Eds.), Probiotics and Plant Health (pp. 497- 506). Singapore: Springer. DOI
Liu, Y., Gao, J., Bai, Z., Wu, S., Li, X., Wang, N., ... Zhuang, X. (2021). Unraveling mechanisms and impact of microbial recruitment on oilseed rape (Brassica napus L.) and the rhizosphere mediated by plant growth-promoting rhizobacteria. Microorganisms, 9(1), 161. DOI
Nawaz, A., Shahbaz, M., Asadullah, A. L., Imran, A., Marghoob, M. U., Imtiaz, M., & Mubeen, F. (2020). Potential of salt tolerant PGPR in growth and yield augmentation of wheat (Triticum aestivum L.) under saline conditions. Frontiers in Microbiology, 11, 02019. DOI
Norton, J. M., & Stark, J. M. (2011). Regulation and measurement of nitrification in terrestrial systems. In Research on Nitrification and Related Processes, Part A (Vol. 486, pp. 343-368). Academic Press. DOI
Paungfoo-Lonhienne, C., Lonhienne, T. G. A., Yeoh, Y. K., Donose, B. C., Webb, R. I., Parsons, J., & Ragan, M. A. (2016). Crosstalk between sugarcane and a plant-growth promoting Burkholderia species. Scientific Reports, 6(1), 37389. DOI
Rouphael, Y., & Colla, G. (2020). Editorial: Biostimulations in agriculture. Frontiers in Plant Science, 11, 40. DOI
Sahu, A., Bhattacharjya, S., Mandai, A., Thakur, J. K., Atoliya, N., Sahu, N., & Patra, A. K. (2018). Microbes: A sustainable approach for enhancing nutrient availability in agricultural soils. In V. Meena (Ed.), Role of Rhizospheric Microbes in Soil: Volume 2: Nutrient Management and Crop Improvement (pp. 47–75). Singapore: Springer. DOI
Santoyo, G., Hernández-Pacheco, C., HernándezSalmerón, J., & Hernández-León, R. (2017). The role of abiotic factors modulating the plantmicrobe-soil interactions: Toward sustainable agriculture. A review. Spanish Journal of Agricultural Research, 15(1), 1–15. DOI
Sattar, A., Naveed, M., Ali, M., Zahir, Z. A., Nadeem, S. M., Yaseen, M., & Meena, H. N. (2019). Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Applied Soil Ecology, 133, 146–159. DOI
Savci, S. (2012). An agricultural pollutant: chemical fertilizer. International Journal of Environmental Science and Development, 3(1), 77-80. DOI
Singh, J. S., & Gupta, V. K. (2018). Soil microbial biomass: A key soil driver in management of ecosystem functioning. Science of The Total Environment, 634, 497–500. DOI
Slepetiene, A., Volungevicius, J., Jurgutis, L., Liaudanskiene, I., Amaleviciute-Volunge, K., Slepetys, J., & Ceseviciene, J. (2020). The potential of digestate as a biofertilizer in eroded soils of Lithuania. Waste Management, 102, 441–451. DOI
Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., & Kouisni, L. (2020). Exploiting biological nitrogen fixation: A route towards a sustainable agriculture. Plants, 9(8), 1011. DOI
Sukul, P., Kumar, J., Rani, A., Abdillahi, A, M., Rakesh, R. B., & Kumar, M. H. (2021). Functioning of plant growth promoting rhizobacteria (PGPR) and their mode of actions: An overview from chemistry point of view. Plant Archives, 21(suppl. 1), 628-638. DOI
Tegeder, M., & Masclaux-Daubresse, C. (2018). Source and sink mechanisms of nitrogen transport and use. New Phytologist, 217(1), 35-53. DOI
Xu, G., Fan, X., & Miller. A.J. (2012). Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, 153-182. DOI
Yagmur, B., & Gunes, A. (2021). Evaluation of the effects of plant growth promoting rhizobacteria (PGPR) on yield and quality parameters of tomato plants in organic agriculture by principal component analysis (PCA). Gesunde Pflanzen, 73, 219-228. DOI
Zhang, L., Hu, B., Deng, K., Gao, X., Sun, G., Zhang, Z., Li, P., Wang, W., Li, H., & Zhang, Z. 2019. NRT1.1B improves selenium concentrations in rice grains by facilitating selenomethinone translocation. Plant Biotechnology Journal, 17, 1058-068. DOI
Zhou, L., Song, C., Li, Z., & Kuipers, O. P. (2021). Antimicrobial activity screening of rhizosphere soil bacteria from tomato and genomebased analysis of their antimicrobial biosynthetic potential. BMC Genomics, 22, 29. DOI
DOI: http://doi.org/10.17503/agrivita.v43i2.2934
Copyright (c) 2021 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.