Genetic Diversity of Perennial Wild Species of Alfalfa Subgenus Falcago (Reichb) Grossh. in Kazakhstan and Their Involvement in the Breeding

Bauyrzhan Bakytzhanovich Kalibayev, Galiolla Tulendinovich Meiirman, Sakysh Tanyrbergenovna Yerzhanova, Serik Sarybaevich Abaev, Amankeldi Turgambekovich Kenebaev

Abstract


The field expedition has collected 144 samples at the ecotype level of seven wild alfalfa species, which are the source of adaptive properties. One part of the original seeds has been placed for medium-term storage as the gene pool, and the other part has been sown in the culture to use wild-growing species in recurrent breeding. It has been found that the productivity of wild species is inferior to that of M. sativa L., but they are valuable as a source of adaptation traits: drought tolerance, salt tolerance, and winter hardiness, which are important with the development of recurrent breeding to adapt the crops to the global climate change. The yield of the hybrid plants in the offspring from crossing seven ecotypes of M. falcata L. (yellow-flowered) with M. sativa L. (blue-flowered) using a marker-trait has been established: the hybrid nature of the plants obtained from free entomophilic cross-pollination has been established, and the yield of the hybrid plants has amounted to 61 – 91 %. In the hybrid population obtained from M. sativa sybsp. transoxona, M. falcata L., and M. tianschanica Vass. upon crossing them, 50 best phenotypes have been selected to continue the backcrossing with M. sativa L.


Keywords


Adaptation traits; Gene pool; Hybrid population; Recurrent breeding; Tetraploid and diploid alfalfa species

Full Text:

PDF

References


Chernyavskikh, V. I., Dumacheva, E. V., & Borodaeva, Z. A. (2019). Osobennosti adaptatsii ekotipov medicago varia m. k razlichnym usloviyam ekotop [Peculiarities of the medicago varia m. ecotypes adaptation to various conditions of the ecotopes]. Proceedings of the V International Scientific and Methodological Conference “Role of Physiology and Biochemistry in Introduction and Breeding of Agricultural Plants” (pp. 104–107). Retrieved from https://vstisp.org/vstisp/images/Sbornik_T-1-2.pdf

del Pozo, A., Ovalle, C., Espinoza, S., Barahona, V., Gerding, M., & Humphries, A. (2017). Water relations and use-efficiency, plant survival and productivity of nine alfalfa (Medicago sativa L.) cultivars in dryland Mediterranean conditions. European Journal of Agronomy, 84, 16–22. https://doi.org/10.1016/j.eja.2016.12.002

Dzyubenko, N. I., Bukhteeva, A. V., & Kochegina, A. A. (2017). Perennial and annual droughtand salt-resistant forage plants in the vavilov collection. Proceedings on Applied Botany, Genetics and Breeding, 178(1), 5–23. https://doi.org/10.30901/2227-8834-2017-1-5-23

Humphries, A. W., Ovalle, C., Hughes, S., del Pozo, A., Inostroza, L., Barahona, V., … Kilian, B. (2021). Characterization and pre-breeding of diverse alfalfa wild relatives originating from droughtstressed environments. Crop Science, 61(1), 69–88. https://doi.org/10.1002/csc2.20274

Humphries, A., Ovalle, C., del Pozo, A., Inostroza, L., Barahona, V., Ivelic-Saez, J., ... Kilian, B. (2018). Introgression of alfalfa crop wild relatives for climate change adaptation. In D. Basigalup, M. Spada, A. Odorizzi, & V. Arolfo (Eds.), Proceedings of the Second World Alfalfa Congress, Global Interaction for Alfalfa Innovation, 11-14 November, Cordoba (pp. 72–76). Argentina: Instituto Nacional de Tecnologia Agropecuaria (INTA). Retrieved from https://alfalfa.ucdavis.edu/+symposium/proceedings/2018/Oral%20Presentations/Introgression-For-ClimateChange-Adaptation%20by%20Hymphries,%20A.__WAC_Argentina_Nov2018.pdf

Krasteva, L., Uzundzhalieva, K., & Ruseva, R. (2012). Plant genetic resources as a part of the biodiversity. Агрознање, 13(1), 5–14. https://doi.org/10.7251/agren1201005k

Kumar, T., Bao, A. K., Bao, Z., Wang, F., Gao, L., & Wang, S. M. (2018). The progress of genetic improvement in alfalfa (Medicago sativa L.). Czech Journal of Genetics and Plant Breeding, 54(2), 41–51. https://doi.org/10.17221/46/2017-CJGPB

Lala, S., Amri, A., & Maxted, N. (2018). Towards the conservation of crop wild relative diversity in North Africa: checklist, prioritisation and inventory. Genetic Resources and Crop Evolution, 65(1), 113–124. https://doi.org/10.1007/s10722-017-0513-5

Lapiņa, L., Grauda, D., & Rashal, I. (2011). Characterization of latvian alfalfa Medicago sativa genetic resources. Acta Biologica Universitatis Daugavpiliensis, 11(2), 134–140. Retrieved from http://sciences.lv/wp-content/uploads/ACTA/2011/11-2/4_Rashal.pdf

Liatukiene, A., Skuodiene, R., Tomchuk, D., & Danyte, V. (2020). Evaluation of agro-biological traits of Medicago sativa and M. varia in a Cambisol and Retisol. Zemdirbyste-Agriculture, 107(1), 41–48. https://doi.org/10.13080/z-a.2020.107.006

Meiirman, G. T., & Yerzhanova, S. T. (2015). The formation and study in the culture of genetic resources of forage crops by the expeditionary collection of wild forms from the natural landscapes of Kazakhstan. Ekin Journal of Crop Breeding and Genetics, 1(2), 70–77. Retrieved from https://dergipark.org.tr/tr/download/article-file/211579

Meiirman, G. T., Kenenbayev, S., Yerzhanova, S., Abayev, S. S., & Toktarbekova, S. (2017). Results of selection studies of alfalfa based on inbred lines. Journal of Agricultural Science and Technology A, 7(5), 309–316. https://doi.org/10.17265/2161-6256/2017.05.003

Meyrman, G. T., Yerzhanova, S. T., Abayev, S. S., Toktarbekova, S. T., & Kenebaev, A. T. (2016). Creation of highly productive polycomponent agrocoenosis of fodder crops to improve the quality of fodder. Science and World, 5(33), 69–75. Retrieved from http://scienceph.ru/f/science_and_world_no_5_33_may_vol_ii.pdf

Nuraliyev, S. K., Meirman, G. T., Abayev, S. S., Bulatova, K. M., & Yerzhebayeva, R. S. (2018). Selection of inbred lines of alfalfa for creating synthetic varieties. OnLine Journal of Biological Sciences, 18(1), 7–16. https://doi.org/10.3844/ojbsci.2018.7.16

Prosperi, J.-M., Jenczewski, E., Muller, M.-H., Fourtier, S., Sampoux, J.-P., & Ronfort, J. (2014). Alfalfa domestication history, genetic diversity and genetic resources. Legume Perspectives, 4, 13–14. Retrieved from https://hal.archives-ouvertes.fr/hal-01216251/document

Shi, S., Nan, L., & Smith, K. F. (2017). The current status, problems, and prospects of alfalfa (Medicago sativa L.) breeding in China. Agronomy, 7(1), 1. https://doi.org/10.3390/agronomy7010001

Toktarbekova, S. T. K., Meiirman, G. T., Yerzhanova, S. T., Abayev, S. S., & Umbetov, A. K. (2020). Productivity of the green mass of new alfalfa cultivars depending on the effect of macroand microfertilizers on various phosphorous backgrounds. Journal of Ecological Engineering, 21(2), 57–62. https://doi.org/10.12911/22998993/116347

Xu, Z., Zhou, G., & Shimizu, H. (2010). Plant responses to drought and rewatering. Plant Signaling & Behavior, 5(6), 649–654. https://doi.org/10.4161/psb.5.6.11398

Zubair, H. M., Pratley, J. E., Sandral, G. A., & Humphries, A. (2017). Allelopathic interference of alfalfa (Medicago sativa L.) genotypes to annual ryegrass (Lolium rigidum). Journal of Plant Research, 130(4), 647–658. https://doi.org/10.1007/s10265-017-0921-9




DOI: http://doi.org/10.17503/agrivita.v43i2.2894

Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.