Productivity of Eugenol from Clove (Syzygium aromaticum L.) Under Different Light and Soil Water Conditions

Adi Setiawan, Satoshi Ito, Yasushi Mitsuda, Ryoko Hirata, Kiwamu Yamagishi, Yasa Palaguna Umar, Ichiro Kamei


We examined the effect of watering and shading treatments on eugenol productivity of clove seedlings in order to provide the information of the suitable site conditions for eugenol production. After a six-month experiment growing clove seedlings under twelve treatments (3 shading treatments (0%, 60% and 80%) x 4 watering treatments (1.0, 0.75, 0.5 and 0.25 l/m2/day), the total leaf mass per tree (LM), the eugenol content per unit leaf mass (EL) and the eugenol yield per tree (EY) were measured and compared between treatments. As the results, the low watering rates reduced LM slightly; however, this effect was counteracted by the drastically increased EL under the same conditions, resulting in the highest EY in the least watered treatment (0.25 l/m2/day). Heavy shading consistently reduced LM and EL, resulting in the lowest LY under the 80% shading treatment. The relatively dryer site condition where moderate water stress is likely to occur is more suitable for planting clove trees from the aspect of the for long-term high productivity of eugenol, and that the high tree density which may cause a severe competition and a heavy mutual shading among clove trees should be avoided to maintain long term high productivity.


Eugenol content; Heavy shade; Suitable site; Water stress

Full Text:



Abdollahi Mandoulakani, B., Eyvazpour, E., & Ghadimzadeh, M. (2017). The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.). Phytochemistry, 139, 1–7.

Alighiri, D., Eden, W. T., Cahyono, E., & Supardi, K. I. (2018). Quality improvement by batch vacuum distillation and physicochemical characterization of clove leaf oil in Central Java, Indonesia. Journal of Physics: Conference Series, 983(1), 012163.

Baietto, M. (2014). Bud fall induction in clove (Syzygium aromaticum). Academic Research International, 5(4), 23–29. https://citeseerx.i s t

Bhuiyan, M. N. I. (2012). Constituents of the essential oil from leaves and buds of clove (Syzigium caryophyllatum (L.) Alston). African Journal of Pharmacy and Pharmacology, 6(16), 1260–1263.

Bhuiyan, M. N. I., Begum, J., Ch, N., & Akter, F. (2010). Constituents of the essential oil from leaves and buds of clove (Syzigium caryophyllatum (L.) Alston). African Journal of Plant Science, 4(11), 451–454.

Fahrig, L., Girard, J., Duro, D., Pasher, J., Smith, A., Javorek, S., King, D., Lindsay, K. F., Mitchell, S., & Tischendorf, L. (2015). Farmlands with smaller crop fields have higher within-field biodiversity. Agriculture, Ecosystems & Environment, 200(Februari 2015), 219–234.

Farahani, H., Sajedi, N. A., Madani, H., Changizi, M., & Naeini, M. R. (2021). Effect of foliarapplied silicon on flower yield and essential oil composition of Damask rose (Rosa damascena Miller) under water deficit stress. Silicon, 13(12), 4463–4472.

Fernandes, V. F., de Almeida, L. B., Feijó, E. V. R. da S., Silva, D. da C., de Oliveira, R. A., Mielke, M. S., & Costa, L. C. do B. (2013). Light intensity on growth, leaf micromorphology and essential oil production of Ocimum gratissimum. Revista Brasileira de Farmacognosia, 23(May-JUne 2013), 419–424.

Gaylor, R., Michel, J., Thierry, D., Panja, R., Fanja, F., & Pascal, D. (2014). Bud, leaf and stem essential oil composition of Syzygium aromaticum from Madagascar, Indonesia and Zanzibar. International Journal of Basic and Applied Sciences, 3(3), 224–233.

Hariyadi, M. A., Yahya, S., & Wachjar, A. (2020). Agromorphologies and physicochemical properties of flower bud, stem and leaf oils in two clove varieties (Syzygium aromaticum L. Merr. and Perry.) originated from Ambon Island. Chiang Mai University Journal of Natural Sciences, 19(3), 516-530.

Hälvä, S., Craker, L. E., Simon, J. E., & Charles, D. J. (1992). Light levels, growth, and essential oil in dill ( Anethum graveolens L.). Journal of Herbs, Spices & Medicinal Plants, 1(1-2), 47–58.

Jaafar, H. Z. E., Ibrahim, M. H., & Mohamad Fakri, N. F. (2012). Impact of soil field water capacity on secondary metabolites, phenylalanine ammonialyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of Malaysian Kacip Fatimah (Labisia pumila Benth). Molecules, 17(6), 7305–7322.

Kamatou, G. P., Vermaak, I., & Viljoen, A. M. (2012). Eugenol—from the remote Maluku Islands to the international market place: A review of a remarkable and versatile molecule. Molecules, 17(6), 6953–6981.

Kumar, R., Sharma, S., & Pathania, V. (2013). Effect of shading and plant density on growth, yield and oil composition of clary sage ( Salvia sclarea L.) in north western Himalaya. Journal of Essential Oil Research, 25(1), 23–32.

Kurniawan, A., Rahayu, W. S., & Wahyuningrum, R. (2009). Perbandingan kadar eugenol minyak atsiri daun cengkeh (Syzygium Aromaticum (L) Merr & Perry) yang tumbuh di dataran tinggi dan dataran rendah. Pharmacy: Jurnal Farmasi Indonesia (Pharmaceutical Journal of Indonesia), 6(3), 83–93.

Lee, S., Najiah, M., Wendy, W., & Nadirah, M. (2009). Chemical composition and antimicrobial activity of the essential oil of Syzygium aromaticum flower bud (clove) against fish systemic bacteria isolated from aquaculture sites. Frontiers of Agriculture in China, 3, 332–336.

Martin, P. J., & Dabek, A. J. (1988). The role of agronomic factors in the juvenile decline condition of clove trees in Zanzibar. Tropical Pest Management, 34(3), 271–277.

Martin, P. J., & Poultney, R. (1992). Survival and growth of clove seedlings in Zanzibar. 1. Effects of mulching and shade crops. Tropical Agriculturture, 69(4), 365–373.

Miraji, M. K. (2013). Effect of weather on clove production in Pemba Island, Tanzania (p. 31). University of Nairobi. of weather on clove production in Pemba Island%2c Tanzania.pdf?sequence=1&isAllowed=y

Norris, K., Asase, A., Collen, B., Gockowksi, J., Mason, J., Phalan, B., & Wade, A. (2010). Biodiversity in a forest-agriculture mosaic – The changing face of West African rainforests. Biological Conservation, 143(10), 2341–2350.

Nurdjannah, N., & Bermawie, N. (2012). Cloves. In Handbook of Herbs and Spices (pp. 197–215). Elsevier.

Pino, J. A., Marbot, R., Agüero, J., & Fuentes, V. (2001). Essential oil from buds and leaves of clove (Syzygium aromaticum (L.) Merr. et Perry) grown in Cuba. Journal of Essential Oil Research, 13(4), 278–279.

Razafimamonjison, G., Jahiel, M., Ramanoelina, P., Fawbush, F., & Danthu, P. (2013). Effects of phenological stages on yield and composition of essential oil of Syzygium aromaticum buds from Madagascar. International Journal of Basic and Applied Sciences, 2(4), 312–318.

Setiawan, A., Ito, S., Mitsuda, Y., Hirata, R., Yamagishi, K., & Umar, Y. P. (2021). Growth response of clove (Syzygium aromaticum L.) seedlings to different light and water regimes. AGRIVITA Journal of Agricultural Science, 43(1), 25–36.

Sutarman, Maharani, N. P., Wachid, A., Abror, M., Machfud, A., & Miftahurrohmat, A. (2019). Effect of ectomycorrhizal fungi and Trichoderma harzianum on the clove (Syzygium aromaticum L.) seedlings performances. Journal of Physics: Conference Series, 1232(1), 012022.

Umar, Y. P., Hirayama, T., Ito, S., Matsukura, M., Mizokuchi, T., Setiawan, A., Mitsuda, Y., Hirata, R., Kajisa, T., & Tarno, H. (2019). Occurrence of plant species in three types of agroforestry patches neighboring each other in East Java, Indonesia. Vegetation Science, 36(2), 61–70.

World Bank Group. (2017). The economics of clove farming in Indonesia. Washington, DC: World Bank.


Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.