Photosynthetic Paramaters of Two Indonesian Soybean Top Varieties

Rusnadi Padjung, Elkawakib Syam'un, Nurlina Kasim

Abstract


Each plant genotype has its own photosynthetic parameters required to run crop growth model. The research is aimed to characterize photosynthetic parameters particularly maximum photosynthesis and initial light use efficiency of two soybean varieties widely planted in Indonesia, Dena-1 and Anjasmoro. Photosynthetic performances were measured in a designed experiment to study the effect of Actinomycetes spp. on growth and yield of soybean. Photosynthesis was measured using an open chamber portable photosynthetic system (LI-6400), at variable Photosynthetically Active Radiation (PAR), i.e. 500; 1,000; 1,500; and 2,000 µmol (photon)/m2/s. The photosynthetic light response curve (PN/I curve) was developed using Solver function of Microsoft Excel. Maximum gross photosynthesis (Pgmax) of Dena-1 is 45.64 μmol (CO2)/m2/s, while Anjasmoro variety is only 34.81 μmol (CO2)/m2/s. Quantum yield at low light (initial light use efficiency) of Dena-1 is also higher with the value of 0.068 μmol (CO2)/μmol(photons) compared to Anjasmoro that have 0.058 μmol (CO2)/μmol (photons). Hence light response curve of Dena-1 variety is consistently higher than Anjasmoro. Under Actinomycetes spp. treatment the light response curve of Dena-1 is higher than Anjasmoro at PAR lower than 706 μmol (photon)/m2/s and higher at PAR above it.


Keywords


Actinomycetes spp; Crop model; Light efficiency; Light response curve; Maximum photosynthesis

Full Text:

PDF

References


AbdElgawad, H., Abuelsoud, W., Madany, M. M. Y., Selim, S., Zinta, G., Mousa, A. S. M., & Hozzein, W. N. (2020). Actinomycetes enrich soil rhizosphere and improve seed quality as well as productivity of legumes by boosting nitrogen availability and metabolism. Biomolecules, 10(12), 1675. https://doi.org/10.3390/biom10121675

Abidin, Z. (2015). Potensi pengembangan tanaman pangan pada kawasan hutan tanaman rakyat. Jurnal Penelitian Dan Pengembangan Pertanian, 34(2), 71–78. https://doi.org/10.21082/jp3.v34n2.2015.p71-78

Amule, F. C., Sirothiya, P., Rawat, A. K., & Mishra, U. S. (2018). Efficacy of actinomycetes, rhizobium and plant growth promoting rhizobacteria consortium inoculants on symbiotic traits, nodule leghemoglobin and yield of soybean in Central India. International Journal of Chemical Studies, 6(1), 593–596. Retrieved from https://www.chemijournal.com/archives/2018/vol6issue1/PartI/5-6-337-822.pdf

Bhatti, A. A., Haq, S., & Bhat, R. A. (2017). Actinomycetes benefaction role in soil and plant health. Microbial Pathogenesis, 111, 458–467. https://doi.org/10.1016/j.micpath.2017.09.036

Bunce, J. (2016). Variation among soybean cultivars in mesophyll conductance and leaf water use efficiency. Plants, 5(4), 44. https://doi.org/10.3390/plants5040044

Carstensen, A., Herdean, A., Schmidt, S. B., Sharma, A., Spetea, C., Pribil, M., & Husted, S. (2018). The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiology, 177(1), 271–284. https://doi.org/10.1104/pp.17.01624

Driesen, E., Van den Ende, W., De Proft, M., & Saeys, W. (2020). Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. Agronomy, 10(12), 1975. https://doi.org/10.3390/agronomy10121975

Elhaddad, N. S., Hunt, L., Sloan, J., & Gray, J. E. (2014). Light-induced stomatal opening is affected by the guard cell protein kinase APK1b. PLOS ONE, 9(5), e97161. https://doi.org/10.1371/journal.pone.0097161

Eyland, D., van Wesemael, J., Lawson, T., & Carpentier, S. (2021). The impact of slow stomatal kinetics on photosynthesis and water use efficiency under fluctuating light. Plant Physiology, 2021, 1-15. https://doi.org/10.1093/plphys/kiab114

Ghorbani-Nasrabadi, R, Greiner, R., Alikhani, H. A., Hamedi, J., & Yakhchali, B. (2013). Distribution of actinomycetes in different soil ecosystems and effect of media composition on extracellular phosphatase activity. Journal of Soil Science and Plant Nutrition, 13(1), 223–236. https://doi.org/10.4067/S0718-95162013005000020

Ghorbani-Nasrabadi, Reza, Greiner, R., Alikhani, H. A., & Hamedi, J. (2012). Identification and determination of extracellular phytate-degrading activity in actinomycetes. World Journal of Microbiology and Biotechnology, 28(7), 2601–2608. https://doi.org/10.1007/s11274-012-1069-3

Gu, J., Zhou, Z., Li, Z., Chen, Y., Wang, Z., Zhang, H., & Yang, J. (2017). Photosynthetic properties and potentials for improvement of photosynthesis in pale green leaf rice under high light conditions. Frontiers in Plant Science, 8, 1082. https://doi.org/10.3389/fpls.2017.01082

Herrmann, H. A., Schwartz, J.-M., & Johnson, G. N. (2020). From empirical to theoretical models of light response curves - linking photosynthetic and metabolic acclimation. Photosynthesis Research, 145(1), 5–14. https://doi.org/10.1007/s11120-019-00681-2

Hozzein, W. N., Abuelsoud, W., Wadaan, M. A. M., Shuikan, A. M., Selim, S., Al Jaouni, S., & AbdElgawad, H. (2019). Exploring the potential of actinomycetes in improving soil fertility and grain quality of economically important cereals. Science of The Total Environment, 651, 2787–2798. https://doi.org/10.1016/j.scitotenv.2018.10.048

Isnaini, Rasyad, A., & Fianda, D. O. (2020). Keragaan kedelai (Glycine max (L) merril) generasi M1 varietas anjasmoro hasil radiasi sinar gamma. Jurnal Agroteknologi, 11(1), 39–44. https://doi.org/10.24014/ja.v11i1.9345

Janati, W., Benmrid, B, Elhaissoufi, W., Zeroual, Y, Nasielski, J., & Bargaz, A. (2021). Will phosphate bio-solubilization stimulate biological nitrogen fixation in grain legumes? Frontiers in Agronomy, 2021, 637196. https://doi.org/10.3389/fagro.2021.637196

Johnson, G., & Murchie, E. (2011). Gas exchange measurements for the determination of photosynthetic efficiency in Arabidopsis leaves. In Chloroplast Research in Arabidopsis. Methods in Molecular Biology (Methods and Protocols) (Vol. 775, pp. 311–326). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-61779-237-3_17

Krisnawati, A., & Adie, M. M. (2017). Protein and oil contents of several soybean genotypes under normal and drought stress environments at reproductive stage. International Journal of Bioscience, Biochemistry and Bioinformatics, 7(4), 252–261. https://doi.org/10.17706/ijbbb.2017.7.4.252-261

Lobo, F. de A., de Barros, M. P., Dalmagro, H. J., Dalmolin, Â. C., Pereira, W. E., de Souza, É. C., … Rodríguez Ortíz, C. E. (2013). Fitting net photosynthetic light-response curves with Microsoft Excel — a critical look at the models. Photosynthetica, 51(3), 445–456. https://doi.org/10.1007/s11099-013-0045-y

Mahdiannoor, Istiqomah, N., & Syahbudin, S. (2017). Pertumbuhan dan hasil dua verietas kedelai (Glycine max L.) dengan pemberian pupuk hayati. Ziraa’ah Majalah Ilmiah Pertanian, 42(3), 257–266. https://doi.org/10.31602/zmip.v42i3.898

McAusland, L., Vialet-Chabrand, S., Davey, P., Baker, N. R., Brendel, O., & Lawson, T. (2016). Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. The New Phytologist, 211(4), 1209–1220. https://doi.org/10.1111/nph.14000

Meng, X., Chen, W.-W, Wang, Y.-Y, Huang, Z.-R., Ye, X., Chen, L.-S, & Yang, L.-T. (2021). Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS ONE, 16(2), e0246944. https://doi.org/10.1371/journal.pone.0246944

Muhammad, I. I., Abdullah, S. N. A., Saud, H. M., Shaharuddin, N. A., & Isa, N. M. (2021). The dynamic responses of oil palm leaf and root metabolome to phosphorus deficiency. Metabolites, 11(4), 217-232. https://doi.org/10.3390/metabo11040217

Pragya, R., Yasmin, A., & Anshula, J. (2012). An insight into agricultural properties of actinomycetes. International Journal of Research in BioScience, 1(1), 7–12. Retrieved from https://www.idjsr.com/uploads/23/1246_pdf.pdf

Pratiwi, H., & Artari, R. (2018). Respon morfo-fisiologi genotipe kedelai terhadap naungan jagung dan ubikayu. Jurnal Agronomi Indonesia, 46(1), 48–56. https://doi.org/10.24831/jai.v46i1.15441

Sahur, A., Ala, A., Patandjengi, B., & Syam’un, E. (2018). Effect of seed inoculation with actinomycetes and rhizobium isolated from indigenous soybean and rhizosphere on nitrogen fixation, growth, and yield of soybean. International Journal of Agronomy, 2018, 4371623. https://doi.org/10.1155/2018/4371623

Saif, S., Khan, M. S., Zaidi, A., & Ahmad, E. (2014). Role of phosphate-solubilizing actinomycetes in plant growth promotion: Current perspective. In Khan M., Zaidi A., & Musarrat J. (Eds.), Phosphate Solubilizing Microorganisms (pp. 137-156). Cham: Springer. https://doi.org/10.1007/978-3-319-08216-5_6

Sakoda, K., Tanaka, Y., Long, S. P., & Shiraiwa, T. (2016). Genetic and physiological diversity in the leaf photosynthetic capacity of soybean. Crop Science, 56(5), 2731–2741. https://doi.org/10.2135/cropsci2016.02.0122

Schneider, K. D., Cade-Menun, B. J., Lynch, D. H., & Voroney, R. P. (2016). Soil phosphorus forms from organic and conventional forage fields. Soil Science Society of America Journal, 80(2), 328–340. https://doi.org/10.2136/sssaj2015.09.0340

Soe, K. M., Bhromsiri, A., Karladee, D., & Yamakawa, T. (2012). Effects of endophytic actinomycetes and Bradyrhizobium japonicum strains on growth, nodulation, nitrogen fixation and seed weight of different soybean varieties. Soil Science and Plant Nutrition, 58(3), 319–325. https://doi.org/10.1080/00380768.2012.682044

Strada, S., & Unger, N. (2016). Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution. Atmospheric Chemistry and Physics, 16(7), 4213–4234. https://doi.org/10.5194/acp16-4213-2016

Timotiwu, P. B., Nurmiaty, Y., Pramono, E., & Maysaroh, S. (2020). Growth and yield responses of four soybean (Glycine max (l.) Merrill.) cultivars to different methods of NPK fertilizer application. Planta Tropika: Journal of Agrosains, 8(1), 39–43. https://doi.org/10.18196/pt.2020.112.39-43

Yao, X., Zhou, H., Zhu, Q., Li, C., Zhang, H., Wu, J.-J., & Xie, F. (2017). Photosynthetic response of soybean leaf to wide light-fluctuation in maizesoybean intercropping system. Frontiers in Plant Science, 8, 1695. https://doi.org/10.3389/fpls.2017.01695

Ye, Z.-P., Ling, Y., Yu, Q., Duan, H.-L., Kang, H.-J., Huang, G.-M., … Zhou, S.-X. (2020). Quantifying light response of leaf-scale water-use efficiency and its interrelationships with photosynthesis and stomatal conductance in C3 and C4 species. Frontiers in Plant Science, 11, 374. https://doi.org/10.3389/fpls.2020.00374

Zhang, Y.-L., Hu, Y.-Y., Luo, H.-H., Chow, W. S., & Zhang, W.-F. (2011). Two distinct strategies of cotton and soybean differing in leaf movement to perform photosynthesis under drought in the field. Functional Plant Biology, 38(7), 567–575. https://doi.org/10.1071/FP11065




DOI: http://doi.org/10.17503/agrivita.v43i2.2842

Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.