Exploration and Antifungal Assay of Endophytic Fungi as Biocontrol of Onion Purple Blotch Disease Caused by Alternaria porri (Ell) Cif In Vitro

Wita Firdausi, Liliek Sulistyowati, Luqman Qurata Aini


Purple blotch disease caused by Alternaria porri is the main destructive foliar disease of genus Allium, causing significant losses in yield of the crops. Recently, purple blotch disease is controlled by synthetic fungicides. However, fungicides have negative effects on the environment. Endophytic fungi can be used as an alternative control because a close symbiosis with the internal tissue of the host can minimize competition in new and complex ecosystems. This study aimed to explore and identify endophytic fungi that have the highest inhibition ability against A. porri and investigate the antagonistic mechanism. The method used in this study is an exploration of endophytic fungi, isolation of A. porri, in vitro antagonism tests, observation of the antagonistic mechanism, extraction of crude protein, SDS-PAGE, and identification. The antagonistic fungi that had the highest inhibition ability were identified as Penicillium citrinum with an inhibitory of 60.04%. Crude protein extracted from P. citrinum which showed inhibitory activity against A. porri is saturation level of ammonium sulfate 80% with a molecular weight of 40 kDa. This study implies that P. citrinum can inhibit the growth of A. porri through its anti fungi compounds. Further in vivo assays or field trials will need to be conducted in future studies.


Allium ascalonicum; Antagonism; Antifungal activity; Biocontrol; Endophytic fungi

Full Text:



Abo-Elyousr, K. A. M., Abdel-Hafez, S. I. I., & AbdelRahim, I. R. (2014). Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. Journal of Phytopathology, 162(9), 567–574. crossref

Andreozzi, A., Prieto, P., Mercado-Blanco, J., Monaco, S., Zampieri, E., Romano, S., … Bianco, C. (2019). Efficient colonization of the endophytes Herbaspirillum huttiense RCA24 and Enterobacter cloacae RCA25 influences the physiological parameters of Oryza sativa L. cv. Baldo rice. Environmental Microbiology, 21(9), 3489–3504. crossref

Bayoumi, Y., Taha, N., Shalaby, T., Alshaal, T., & ElRamady, H. (2019). Sulfur promotes biocontrol of purple blotch disease via Trichoderma spp. and enhances the growth, yield and quality of onion. Applied Soil Ecology, 134, 15–24. crossref

Black, L., Conn, K., Gabor, B., Kao, J., & Lutton, J. (2012). Purple blotch. In K. Conn, J. Lutton, & S. Rosenberger (Eds.), Onion Disease Guide (p. 29). St. Louis, MO: Seminis Vegetable Seeds Inc. Retrieved from website

Central Bureau of Statistics. (2017). Statistics of seasonal vegetable and fruit plants. Retrieved from website

Chowdappa, P., Sandhya, H., & Reddi, B. B. (2012). Diversity analysis of Alternaria porri (Ellis) Cif - causal organism of purple leaf blotch of onion. International Journal of Innovative Horticulture, 1(1), 11–17. Retrieved from website

Doan, D. T., Luu, D. P., Nguyen, T. D., Thi, B. H., Thi, H. M. P., Do, H. N., … Tran, Q. T. (2019). Isolation of Penicillium citrinum from roots of Clerodendron cyrtophyllum and application in biosynthesis of aglycone isoflavones from soybean waste fermentation. Foods, 8(11), 554. crossref

Gokhale, M., Gupta, D., Gupta, U., Faraz, R., & Sandhu, S. S. (2017). Patents on endophytic fungi. Recent Patents on Biotechnology, 11(2), 150129. crossref

Gubbins, P. O., & Anaissie, E. J. (2009). Antifungal therapy. In Clinical Mycology (2nd ed., pp. 161–195). Edinburgh: Churchill Livingstone. crossref

Hu, Y., Zhang, J., Liu, D., Guo, J., Liu, T., & Xin, Z. (2017). Pencitrin and pencitrinol, two new citrinin derivatives from an endophytic fungus Penicillium citrinum salicorn 46. Phytochemistry Letters, 22, 229–234. crossref

Kareem, M. A., Murthy, K. V. M. ., Hasanbab, A. N., & Waseem, M. . (2012). Effect of temperature, relative humidity and light on lesion length due to Alternaria porri in onion. BIOINFOLET, 9(3), 264–266. Retrieved from website

Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 845. crossref

Kumar, S., & Kaushik, N. (2012). Metabolites of endophytic fungi as novel source of biofungicide: A review. Phytochemistry Reviews, 11, 507–522. crossref

Lai, D., Brötz-Oesterhelt, H., Müller, W. E. G., Wray, V., & Proksch, P. (2013). Bioactive polyketides and alkaloids from Penicillium citrinum, a fungal endophyte isolated from Ocimum tenuiflorum. Fitoterapia, 91, 100–106. crossref

Li, H. T., Duan, R. T., Liu, T., Yang, R. N., Wang, J. P., Liu, S. X., ... Ding, Z. T. (2020). Penctrimertone, a bioactive citrinin dimer from the endophytic fungus Penicillium sp. T2-11. Fitoterapia, 146, 104711. crossref

Lugtenberg, B. (2018). Putting concerns for caution into perspective: microbial plant protection products are safe to use in agriculture. Journal of Plant Diseases and Protection, 125, 127–129. crossref

Luo, H., Qing, Z., Deng, Y., Deng, Z., Xia’an, T., Feng, B., & Lin, W. (2019). Two polyketides produced by endophytic Penicillium citrinum DBR-9 from medicinal plant Stephania kwangsiensis and their antifungal activity against plant pathogenic fungi. Natural Product Communications, 14(5), 1–6. crossref

Madhavi, M., Kavitha, A., & Vijayalakshmi, M. (2012). Studies on Alternaria porri (Ellis) Ciferri pathogenic to onion (Allium cepa L.). Archives of Applied Science Research, 4(1), 1–9. Retrieved from pdf

Muimba-Kankolongo, A. (2018). Food crop production by smallholder farmers in Southern Africa. Academic Press. Retrieved from website

Noveriza, R., & Quimio, T. H. (2004). Soil mycoflora of black pepper rhizosphere in the Philippines and their in vitro antagonism against Phytophthora capsici L. Indonesian Journal of Agricultural Science, 5(1), 1–10. crossref

Nunes, C. S., & Philipps-Wiemann, P. (2018). Chitinases. In Enzymes in Human and Animal Nutrition: Principles and Perspectives (pp. 361-378). Elsevier Inc. crossref

O’Neill, M., McPartlin, J., Arthure, K., Riedel, S., & McMillan, N. D. (2011). Comparison of the TLDA with the nanodrop and the reference qubit system. Journal of Physics: Conference Series, 307, 012047. crossref

Priya, R. U., Sataraddi, A., & Darshan, S. (2015). Efficacy of non-systemic and systemic fungicides against purple blotch of onion (Allium cepa L.) caused by Alternaria porri (Ellis) Cif. International Journal of Recent Scientific Research, 6(9), 6519–6521. Retrieved from website

Raja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal identification using molecular tools: A primer for the natural products research community. Journal of Natural Products, 80(3), 756–770. crossref

Rodrigues, D., Pillaca-Pullo, O., Torres-Obreque, K., Flores-Santos, J., Sánchez-Moguel, I., Pimenta, M. V., … Pessoa, A. J. (2019). Fedbatch production of Saccharomyces cerevisiae L-Asparaginase II by recombinant Pichia pastoris MUTs strain. Frontiers in Bioengineering and Biotechnology, 7, 16. crossref

Tolulope, R. A., Adeyemi, A. I., Erute, M. A., & Abiodun, T. S. (2015). Isolation and screening of endophytic fungi from three plants used in traditional medicine in Nigeria for antimicrobial activity. International Journal of Green Pharmacy, 9(1), 58–62. crossref

Wang, X., Radwan, M. M., Taráwneh, A. H., Gao, J., Wedge, D. E., Rosa, L. H., … Cutler, S. J. (2013). Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. Journal of Agricultural and Food Chemistry, 61(19), 4551–4555. crossref

Wen, C., Guo, W., & Chen, X. (2014). Purification and identification of a novel antifungal protein secreted by Penicillium citrinum from the Southwest Indian Ocean. Journal of Microbiology and Biotechnology, 24(10), 1337–1345. crossref

DOI: http://doi.org/10.17503/agrivita.v43i1.2838

Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.