Joint Action of Azadirachta indica and Barringtonia asiatica Seed Extracts against Crocidolomia pavonana

Edy Syahputra, Minarti Minarti


A high population of Crocidolomia pavonana larvae reduces Brassicaceae crop productivity. To control the pest population, mixed plant extract as botanical insecticides is one of the alternatives. The purpose of this research is to evaluate the joint action between mixed extracts of Azadirachta indica and Barringtonia asiatica seed extracts against C. pavonana larvae and the effect on feeding behavior. The seeds are extracted with ethanol using the maceration method. Bioassays are conducted by a feeding method. Each level of concentration tested and controlled is repeated five times. The concentration-mortality relationship is analyzed using probit. Feeding behavior assayed by choice and no-choice at concentrations equivalent to LC25, LC50, and LC75. The results show the mixture of A. indica and B. asiatica seed extract at a ratio of 3:2.3 has a strongly synergistic action with an LC50 of 0.04% and a combination index of 0.27. The extract mixture at a concentration of 0.02-0.08% is reduced feeding activity 77.16-92.84%. Further research is needed to evaluate the extract mixture in the field.


Activity; Antifeedant; Botanical insecticides; Joint-action

Full Text:



Agrell, J., Anderson, P., Oleszek, W., Stochmal, A., & Agrell, C. (2004). Combined effects of elevated CO2 and herbivore damage on alfalfa and cotton. Journal of Chemical Ecology, 30(11), 2309–2324.

Arisanti, I. M., & Dono, D. (2015). Bioaktivitas campuran ekstrak biji Barringtonia asiatica L. (Kurz.) (Lecythidaceae) dan getah Azadirachta indica A. Juss. (Meliaceae) terhadap larva Spodoptera litura F. (Lepidoptera: Noctuidae). Jurnal Agrikultura, 26(1), 30–40.

Arivoli, S., & Tennyson, S. (2013). Antifeedant activity, developmental indices and morphogenetic variations of plant extracts against Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Journal of Entomology and Zoology Studies, 1(4), 87–96. Retrieved from

Arnason, J. T., Sims, S. R., & Scott, I. M. (2012). Natural products from plants as insecticides. In Encyclopedia of Life Support Systems (EOLSS) (pp. 1–8). Phytochemistry and Pharmacognosy. Retrieved from

Biondi, A., Desneux, N., Siscaro, G., & Zappalà, L. (2012). Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere, 87(7), 803–812.

Chou, T. C., & Talalay, P. (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation, 22, 27–55.

Dono, D., Natawigena, W. D., & Majid, M. G. (2012). Bioactivity of methanolic seed extract of Barringtonia asiatica L. (Kurz) (Lecythidaceae) on biological characters of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). International Research Journal of Agricultural Science and Soil Science, 2(11), 469–475. Retrieved from

Esparza-Díaz, G., López-Collado, J., VillanuevaJiménez, J. A., Osorio-Acosta, F., OteroColina, G., & Camacho-Díaz, E. (2010). Azadirachtin concentration, insecticide efficacy and phytotoxicity of four neem Azadirachta indica A. Juss. extracts. Agrociencia, 44(7), 821–833. Retrieved from

Gershenzon, J., & Croteau, R. (1991). Terpenoids. In G. A. Rosenthal & M. Berenbaum (Eds.), Herbivores: their Interactions with Secondary Plant Metabolites (2nd ed., pp. 165–219). San Diego: Academic Press.

Gisi, U. (1996). Synergistic interaction of fungicides in mixtures. Phytopathology, 86(11), 1273–1279. Retrieved from

Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51(1), 45–66.

Khater, H. F. (2012). Prospects of botanical biopesticides in insect pest management. Pharmacologia, 3(12), 641–656.

Kosman, E., & Cohen, Y. (1996). Procedures for calculating and differentiating synergism and antagonism in action of fungicide mixtures. Phytopathology, 86(11), 1263–1272. Retrieved from

Koul, O. (2008). Phytochemicals and insect control: An antifeedant approach. Critical Reviews in Plant Sciences, 27(1), 1–24.

Koul, O., Singh, G., Singh, R., Singh, J., Daniewski, W. M., & Berlozecki, S. (2004). Bioefficacy and modeof-action of some limonoids of salannin group from Azadirachta indica A. Juss and their role in a multicomponent system against lepidopteran larvae. Journal of Biosciences, 29(4), 409–416.

Lina, E. C., Dadang, Manuwoto, S., Syahbirin, G., & Prijono, D. (2015). Synergistic action of mixed extracts of Brucea javanica (Simaroubaceae), Piper aduncum (Piperaceae), and Tephrosia vogelii (Leguminosae) against cabbage head caterpillar, Crocidolomia pavonana. Journal of Biopesticides, 6(1), 77–83. Retrieved from

Martinou, A. F., Seraphides, N., & Stavrinides, M. C. (2014). Lethal and behavioral effects of pesticides on the insect predator Macrolophus pygmaeus. Chemosphere, 96, 167–173.

Miresmailli, S., & Isman, M. B. (2014). Botanical insecticides inspired by plant-herbivore chemical interactions. Trends in Plant Science, 19(1), 29–35.

Mohan, M. C., Reddy, N. P., Devi, U. K., Kongara, R., & Sharma, H. C. (2007). Growth and insect assays of Beauveria bassiana with neem to test their compatibility and synergism. Biocontrol Science and Technology, 17(10), 1059–1069.

Morgan, E. D. (2009). Azadirachtin, a scientific gold mine. Bioorganic & Medicinal Chemistry, 17(12), 4096–4105.

Nagini, S., Nivetha, R., Palrasu, M., & Mishra, R. (2021). Nimbolide, a Neem Limonoid, Is a Promising Candidate for the Anticancer Drug Arsenal. Journal of medicinal chemistry 64(7), 3560–3577.

Nawrot, J., & Harmatha, J. (2012). Phytochemical feeding deterrents for stored product insect pests. Phytochemistry Reviews, 11, 543–566.

Paul, D., & Sohkhlet, M. D. (2012). Anti-feedant, repellent and growth regulatory effects of four plant extracts on Pieris brassicae larvae (Lepidoptera: Pieridae). Journal of Entomological Research, 1(10), 485. Retrieved from

Purrington, C. B. (2003). Antifeedant substances in plants. In B. Thomas (Ed.), Encyclopedia of Applied Plant Sciences (pp. 1140–1145). Oxford: Elsevier.

SAS Institute Inc. (2011). SAS/STAT® 9.3 user’s guide. Cary, NC: SAS Institute Inc. Retrieved from

South, A., & Hastings, I. M. (2018). Insecticide resistance evolution with mixtures and sequences: A modelbased explanation. Malaria Journal, 17(1), 80.

Susanto, M. S., & Prijono, D. (2015). Sinergisme ekstrak Piper aduncum dan Tephrosia vogelii terhadap penggerek batang padi kuning, Scirpophaga incertulas. Jurnal Agrikultura, 26(1), 7–14.

Syahputra, E. (2010). Sediaan biji Barringtonia asiatica: Aktivitas pada hama kubis Crocidolomia pavonana di laboratorium dan keefektifan di lapangan. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 10(2), 100–107.

Szczepanik, M., Grudniewska, A., Zawitowska, B., & Wawrzeńczyk, C. (2014). Structure-related antifeedant activity of halolactones with a p-menthane system against the lesser mealworm, Alphitobius diaperinus Panzer. Pest Management Science, 70(6), 953–958.

Tangtrakulwanich, K., & Reddy, G. V. P. (2014). Development of insect resistance to plant biopesticides: An overview. In D. Singh (Ed.), Advances in Plant Biopesticides (pp. 47–62). New Delhi: Springer India.

Umaru, I. J., Ahmed, F. B., Umaru, H. A., Umaru, K. I., & Samling, B. (2018) A Review on The Phytochemical and Pharmacological Properties Barringtonia Asiatica 2(3).

Wang, X., & Shen, Z. (2007). Potency of some novel insecticides at various environmental temperatures on Myzus persicae. Phytoparasitica, 35(4), 414.

Warnock, D. F., & Cloyd, R. A. (2005). Effect of pesticide mixtures in controlling western flower thrips (Thysanoptera: Thripidae). Journal of Entomological Science, 40(1), 54–66.


Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.