Joint Action of Azadirachta indica and Barringtonia asiatica Seed Extracts against Crocidolomia pavonana
Abstract
A high population of Crocidolomia pavonana larvae reduces Brassicaceae crop productivity. To control the pest population, mixed plant extract as botanical insecticides is one of the alternatives. The purpose of this research is to evaluate the joint action between mixed extracts of Azadirachta indica and Barringtonia asiatica seed extracts against C. pavonana larvae and the effect on feeding behavior. The seeds are extracted with ethanol using the maceration method. Bioassays are conducted by a feeding method. Each level of concentration tested and controlled is repeated five times. The concentration-mortality relationship is analyzed using probit. Feeding behavior assayed by choice and no-choice at concentrations equivalent to LC25, LC50, and LC75. The results show the mixture of A. indica and B. asiatica seed extract at a ratio of 3:2.3 has a strongly synergistic action with an LC50 of 0.04% and a combination index of 0.27. The extract mixture at a concentration of 0.02-0.08% is reduced feeding activity 77.16-92.84%. Further research is needed to evaluate the extract mixture in the field.
Keywords
Full Text:
PDFReferences
Agrell, J., Anderson, P., Oleszek, W., Stochmal, A., & Agrell, C. (2004). Combined effects of elevated CO2 and herbivore damage on alfalfa and cotton. Journal of Chemical Ecology, 30(11), 2309–2324. DOI
Arisanti, I. M., & Dono, D. (2015). Bioaktivitas campuran ekstrak biji Barringtonia asiatica L. (Kurz.) (Lecythidaceae) dan getah Azadirachta indica A. Juss. (Meliaceae) terhadap larva Spodoptera litura F. (Lepidoptera: Noctuidae). Jurnal Agrikultura, 26(1), 30–40. DOI
Arivoli, S., & Tennyson, S. (2013). Antifeedant activity, developmental indices and morphogenetic variations of plant extracts against Spodoptera litura (Fab) (Lepidoptera: Noctuidae). Journal of Entomology and Zoology Studies, 1(4), 87–96. Retrieved from PDF
Arnason, J. T., Sims, S. R., & Scott, I. M. (2012). Natural products from plants as insecticides. In Encyclopedia of Life Support Systems (EOLSS) (pp. 1–8). Phytochemistry and Pharmacognosy. Retrieved from PDF
Biondi, A., Desneux, N., Siscaro, G., & Zappalà, L. (2012). Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere, 87(7), 803–812. DOI
Chou, T. C., & Talalay, P. (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation, 22, 27–55. DOI
Dono, D., Natawigena, W. D., & Majid, M. G. (2012). Bioactivity of methanolic seed extract of Barringtonia asiatica L. (Kurz) (Lecythidaceae) on biological characters of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). International Research Journal of Agricultural Science and Soil Science, 2(11), 469–475. Retrieved from PDF
Esparza-Díaz, G., López-Collado, J., VillanuevaJiménez, J. A., Osorio-Acosta, F., OteroColina, G., & Camacho-Díaz, E. (2010). Azadirachtin concentration, insecticide efficacy and phytotoxicity of four neem Azadirachta indica A. Juss. extracts. Agrociencia, 44(7), 821–833. Retrieved from website
Gershenzon, J., & Croteau, R. (1991). Terpenoids. In G. A. Rosenthal & M. Berenbaum (Eds.), Herbivores: their Interactions with Secondary Plant Metabolites (2nd ed., pp. 165–219). San Diego: Academic Press. DOI
Gisi, U. (1996). Synergistic interaction of fungicides in mixtures. Phytopathology, 86(11), 1273–1279. Retrieved from PDF
Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51(1), 45–66. DOI
Khater, H. F. (2012). Prospects of botanical biopesticides in insect pest management. Pharmacologia, 3(12), 641–656. DOI
Kosman, E., & Cohen, Y. (1996). Procedures for calculating and differentiating synergism and antagonism in action of fungicide mixtures. Phytopathology, 86(11), 1263–1272. Retrieved from website
Koul, O. (2008). Phytochemicals and insect control: An antifeedant approach. Critical Reviews in Plant Sciences, 27(1), 1–24. DOI
Koul, O., Singh, G., Singh, R., Singh, J., Daniewski, W. M., & Berlozecki, S. (2004). Bioefficacy and modeof-action of some limonoids of salannin group from Azadirachta indica A. Juss and their role in a multicomponent system against lepidopteran larvae. Journal of Biosciences, 29(4), 409–416. DOI
Lina, E. C., Dadang, Manuwoto, S., Syahbirin, G., & Prijono, D. (2015). Synergistic action of mixed extracts of Brucea javanica (Simaroubaceae), Piper aduncum (Piperaceae), and Tephrosia vogelii (Leguminosae) against cabbage head caterpillar, Crocidolomia pavonana. Journal of Biopesticides, 6(1), 77–83. Retrieved from website
Martinou, A. F., Seraphides, N., & Stavrinides, M. C. (2014). Lethal and behavioral effects of pesticides on the insect predator Macrolophus pygmaeus. Chemosphere, 96, 167–173. DOI
Miresmailli, S., & Isman, M. B. (2014). Botanical insecticides inspired by plant-herbivore chemical interactions. Trends in Plant Science, 19(1), 29–35. DOI
Mohan, M. C., Reddy, N. P., Devi, U. K., Kongara, R., & Sharma, H. C. (2007). Growth and insect assays of Beauveria bassiana with neem to test their compatibility and synergism. Biocontrol Science and Technology, 17(10), 1059–1069. DOI
Morgan, E. D. (2009). Azadirachtin, a scientific gold mine. Bioorganic & Medicinal Chemistry, 17(12), 4096–4105. DOI
Nagini, S., Nivetha, R., Palrasu, M., & Mishra, R. (2021). Nimbolide, a Neem Limonoid, Is a Promising Candidate for the Anticancer Drug Arsenal. Journal of medicinal chemistry 64(7), 3560–3577. DOI
Nawrot, J., & Harmatha, J. (2012). Phytochemical feeding deterrents for stored product insect pests. Phytochemistry Reviews, 11, 543–566. DOI
Paul, D., & Sohkhlet, M. D. (2012). Anti-feedant, repellent and growth regulatory effects of four plant extracts on Pieris brassicae larvae (Lepidoptera: Pieridae). Journal of Entomological Research, 1(10), 485. Retrieved from PDF
Purrington, C. B. (2003). Antifeedant substances in plants. In B. Thomas (Ed.), Encyclopedia of Applied Plant Sciences (pp. 1140–1145). Oxford: Elsevier. DOI
SAS Institute Inc. (2011). SAS/STAT® 9.3 user’s guide. Cary, NC: SAS Institute Inc. Retrieved from PDF
South, A., & Hastings, I. M. (2018). Insecticide resistance evolution with mixtures and sequences: A modelbased explanation. Malaria Journal, 17(1), 80. DOI
Susanto, M. S., & Prijono, D. (2015). Sinergisme ekstrak Piper aduncum dan Tephrosia vogelii terhadap penggerek batang padi kuning, Scirpophaga incertulas. Jurnal Agrikultura, 26(1), 7–14. DOI
Syahputra, E. (2010). Sediaan biji Barringtonia asiatica: Aktivitas pada hama kubis Crocidolomia pavonana di laboratorium dan keefektifan di lapangan. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 10(2), 100–107. DOI
Szczepanik, M., Grudniewska, A., Zawitowska, B., & Wawrzeńczyk, C. (2014). Structure-related antifeedant activity of halolactones with a p-menthane system against the lesser mealworm, Alphitobius diaperinus Panzer. Pest Management Science, 70(6), 953–958. DOI
Tangtrakulwanich, K., & Reddy, G. V. P. (2014). Development of insect resistance to plant biopesticides: An overview. In D. Singh (Ed.), Advances in Plant Biopesticides (pp. 47–62). New Delhi: Springer India. DOI
Umaru, I. J., Ahmed, F. B., Umaru, H. A., Umaru, K. I., & Samling, B. (2018) A Review on The Phytochemical and Pharmacological Properties Barringtonia Asiatica 2(3). DOI
Wang, X., & Shen, Z. (2007). Potency of some novel insecticides at various environmental temperatures on Myzus persicae. Phytoparasitica, 35(4), 414. DOI
Warnock, D. F., & Cloyd, R. A. (2005). Effect of pesticide mixtures in controlling western flower thrips (Thysanoptera: Thripidae). Journal of Entomological Science, 40(1), 54–66. DOI
DOI: http://doi.org/10.17503/agrivita.v44i1.2809
Copyright (c) 2022 The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.