Control of Banana Wilt Disease Caused by Fusarium oxysporum Schlecht f.sp. cubense (E. F. Smith) Using Crab Shell Powder and Chitosan

Widodo Widodo, Heri Harti, Suryo Wiyono


This research was conducted to evaluate the effectiveness of crab shell powder and chitosan to control Fusarium wilt disease on bananas and to analyze the involved control mechanisms. The effectiveness of crab shell powder and chitosan to F. oxysporum f.sp. cubense was examined in a laboratory (in vitro) and greenhouse (in planta). In vitro evaluation showed that chitosan has an antifungal effect while crab shell powder did not. Application of crab shell powder and chitosan suppressed the disease in green house test. The concentrations of crab shell powder and chitosan that most effective to control Fusarium wilt incidences were 0.25% and 0.10% with an efficacy rate of 66.7% and 83.3%, respectively. The highest disease severity reduction was showed by crab shell powder 0.25% and chitosan 0.50% with an efficacy rate of 56.8% and 59.4%, respectively. Suppression of the disease might be due to the fungicidal effect of chitosan and the increase of the total population of bacteria and chitinolytic bacteria in the rhizosphere when banana seedling roots were treated with crab shell powder or chitosan. Experiment results using the split roots technique exhibited the role of crab shell powder and chitosan potentially to induce the resistance of banana to Fusarium wilt.


Antifungal; Biological control; Chitinoliytic bacteria; Induced resistance; Soil amendment

Full Text:



Abd-El-Kareem, F., El-Mougy, N. S., El-Gamal, N. G., & Fotouh, Y. (2006). Use of chitin and chitosan against tomato root rot disease under greenhouse conditions. Research Journal of Agriculture and Biological Sciences, 2(4), 147–152. Retrieved from pdf

Alabouvette, C. (1999). Fusarium wilt suppressive soils: An example of disease-suppressive soils. Australasian Plant Pathology, 28, 57–64. crossref

Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59(1), 143–169. crossref

Amini, J. (2009). Induced resistance in tomato plants against fusarium wilt invoked by nonpathogenic Fusarium, chitosan and Bion. Plant Pathology Journal, 25(3), 256–262. crossref

Bakker, P., Berendsen, R., Doornbos, R., Wintermans, P., & Pieterse, C. (2013). The rhizosphere revisited: Root microbiomics. Frontiers in Plant Science, 4, 165. crossref

Bell, A. A., Hubbard, J. C., Liu, L., Michael Davis, R., & Subbarao, K. V. (1998). Effects of chitin and chitosan on the incidence and severity of Fusarium yellows of celery. Plant Disease, 82(3), 322–328. crossref

Benhamou, N., Lafontaine, P. J., & Nicole, M. (1994). Induction of systemic resistance to fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology, 84, 1432–1444. crossref

Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486. crossref

Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014). Unraveling the plant microbiome: Looking back and future perspectives. Frontiers in Microbiology, 5, 148. crossref

Bilgin, Ş., & Fidanbaş, Z. U. C. (2011). Nutritional properties of crab (Potamon potamios Olivier, 1804) in the Lake of Eǧirdir (Turkey). Pakistan Veterinary Journal, 31(3), 239–243. Retrieved from pdf

Carlier, J., De Waele, D., & Escalant, J. V. (2003). Global evaluation of Musa germplasm for resistance to Fusarium wilt, Mycospherella leaf spot diseases and nematodes: Performance evaluation. INIBAP Techincal Guidelines No. 7. Montpellier, FR: The International Network for the Improvement of Banana and Plantain. Retrieved from website

Cook, R. J., & Baker, K. F. (1983). The nature and practice of biological control of plant pathogens. American Phytopathological Society. Retrieved from website

Cretou, M. S., Korthals, G. W., Visser, J. H. M., & van Elsas, J. D. (2013). Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field. Applied and Environmental Microbiology, 79(17), 5291–5301. crossref

Das, S. K., & Varma, A. (2010). Role of enzymes in maintaining soil health. In G. Shukla & A. Varma (Eds.), Soil Enzymology (pp. 25–42). Berlin, Heidelberg: Springer. crossref

Debode, J., De Tender, C., Soltaninejad, S., Van Malderghem, C., Haegeman, A., Van der Linden, I., ... Maes, M. (2016). Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology. Frontiers in Microbiology, 7, 565. crossref

Deng, L., Zhou, Y., & Zeng, K. (2015). Pre-harvest spray of oligochitosan induced the resistance of harvested navel oranges to anthracnose during ambient temperature storage. Crop Protection, 70, 70–76. crossref

Dita, M., Barquero, M., Heck, D., Mizubuti, E. S. G., & Staver, C. P. (2018). Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in Plant Science, 9, 1468. crossref

Dong, X., Wang, M., Ling, N., Shen, Q., & Guo, S. (2016). Effects of iron and boron combinations on the suppression of Fusarium wilt in banana. Scientific Reports, 6, 38944. crossref

Efendi, Y., Pambudi, A., & Pancoro, A. (2019). Metagenomic analysis of Fusarium oxysporum f.sp. cubense-infected soil in banana plantation, Sukabumi, Indonesia. Biodiversitas, 20(7), 1939-1945. crossref

El Hassni, M., El Hadrami, A., Daayf, F., Barka, E. A., & El Hadrami, I. (2004). Chitosan, antifungal product against Fusarium oxysporum f. sp. albedinis and elicitor of defence reactions in date palm roots. Phytopathologia Mediterranea, 43(2), 195–204. Retrieved from website

Farouk, S., Ghoneem, K. M., & Ali, A. A. (2008). Induction and expression of systemic resistance to downy mildew disease in cucumber by elicitors. Egypt Journal of Phytopathology, 36(1–2), 95–111. Retrieved from website

Fu, L., Ou, Y., Shen, Z., Wang, B., Li, R., & Shen, Q. (2019). Stable microbial community and specific beneficial taxa associated with naturally healthy banana rhizosphere. Journal of Microbiology and Biotechnology, 29(10), 1624-1628. crossref

Hallmann, J., Rodríguez-Kábana, R., & Kloepper, J. W. (1999). Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biology and Biochemistry, 31(4), 551–560. crossref

Hora, T. S., & Baker, R. (1972). Soil fungistasis: Microflora producing a volatile inhibitor. Transactions of the British Mycological Society, 59(3), 491–500. crossref

Inderbitzin, P., Ward, J., Barbella, A., Solares, N., Izyumin, D., Burman, P., ... Subbarao, K. V. (2018). Soil microbiomes associated with verticillium wiltsuppressive broccoli and chitin amendments are enriched with potential biocontrol agents. Phytopathology, 108(1), 31–43. crossref

Jitareerat, P., Paumchai, S., Kanlayanarat, S., & Sangchote, S. (2007). Effect of chitosan on ripening, enzymatic activity, and disease development in mango (Mangifera indica) fruit. New Zealand Journal of Crop and Horticultural Science, 35(2), 211–218. crossref

Kaushal, M., Swennen, R., & Mahuku, G. (2020). Unlocking the microbiome communities of banana (Musa spp.) under disease stressed (Fusarium wilt) and non-stressed conditions. Microorganisms, 8(3), 443. crossref

Kent, A. D., & Triplett, E. W. (2002). Microbial communities and their interactions in soil and rhizosphere ecosystems. Annual Review of Microbiology, 56, 211–236. crossref

Khiareddine, H. J., El-Mohamedy, R. S., Abdel-Kareem, F., Abdallah, R. A. Ben, Gueddes-Chahed, M., & Daami-Remadi, M. (2015). Variation in chitosan and salicylic acid efficacy towards soilborne and air-borne fungi and their suppressive effect of tomato wilt severity. Journal of Plant Pathology & Microbiology, 6, 11. crossref

Kielak, A. M., Cretoiu, M. S., Semenov, A. V., Sørensen, S. J., & van Elsas, J. D. (2013). Bacterial chitinolytic communities respond to chitin and pH alteration in soil. Applied and Environmental Microbiology, 79(1), 263–272. crossref

Kloepper, J. W., Reddy, M. S., Rodriguez-Kabana, R., Kenney, D. S., Kokalis-Burelle, N., & MartinezOchoa, N. (2004). Application for rhizobacteria in transplant production and yield enhancement. Acta Horticulturae, 631, 219–229. crossref

Kurita, K. (2006). Chitin and chitosan: Functional biopolymers from marine crustaceans. Marine Biotechnology, 8, 203. crossref

Liu, H. A., Comino, J. R., Wu, H. S., Yang, G. Y., Ma, X. L., Wang, X. J., ... Brevik, E. C. (2018). Assessment of a new bio-organic remediation as a bio-fungicide in fusarium-infested soils of watermelon monoculture areas from China. Journal of Soil Science and Plant Nutrition, 18(3), 735–751. crossref

Moore, N. Y., Pegg, K. G., Bentley, S., & Smith, L. J. (2001). Fusarium wilt of banana: Global problems and perspectives. In A. B. Molina, N. H. Nik Masdek, & K. W. Liew (Eds.), Banana Fusarium wilt management, towards sustainable cultivation. Proceedings of the International Workshop on the Banana Fusarium Wilt Disease (pp. 11–30). Los Baños, Laguna (Philippines): INIBAP-ASPNET. Retrieved from website

Orr, R., & Nelson, P. N. (2018). Impacts of soil abiotic attributes on Fusarium wilt, focusing on bananas. Applied Soil Ecology, 132, 20–33. crossref

Paz-Lago, D., Borges Jr., A., Gutiérrez, A., Borges, A., Cabrera, G., Ramírez, M. A., & Falcón, A. (2000). Tomato-Fusarium oxysporum interactions: IIChitosan and MSB induced resistance against FOL in young tomato plants. Cultivos Tropicales, 21(4), 17–20. Retrieved from pdf

Ploetz, R. C., & Pegg, K. G. (2000). Fusarium wilt. In D. R. Jones (Ed.), Diseases of Banana, Abacá, and Enset (pp. 143–159). Wallingford: CABI Pub. Retrieved from website

Ploetz, R., & Pegg, K. (1997). Fusarium wilt of banana and Wallace’s line: Was the disease originally restricted to his Indo-Malayan region? Australasian Plant Pathology, 26, 239–249. crossref

Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2009). The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321, 341–361. crossref

Reddy, M. V. B., Arul, J., Angers, P., & Couture, L. (1999). Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. Journal of Agricultural and Food Chemistry, 47(3), 1208–1216. crossref

Siegel-Hertz, K., Edel-Hermann, V., Chapelle, E., Terrat, S., Raaijmakers, J. M., & Steinberg, C. (2018). Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Châteaurenard region. Frontiers in Microbiology, 9, 568. crossref

Sneh, B., & Henis, Y. (1971). Production of antifungal substances active against Rhizoctonia solani in chitin-amended soil. Phytopathology, 62, 595–600. crossref

Stover, R. H. (1962). Fusarial wilt (Panama disease) of bananas and other Musa species. Kew, England: Commonwealth Mycological Institute. Retrieved from website

Suarez-Fernandez, M., Marhuende-Egea, F. C., LopezMoya, F., Arnao, M. B., Cabrera-Escribano, F., Nueda, M. J., ... & Lopez-Llorca, L. V. (2020). Chitosan induces plant hormones and defenses in tomato root exudates. Frontiers in Plant Science, 11, 572087. crossref

Tharanathan, R. N., & Kittur, F. S. (2003). Chitin - The undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutrition, 43(1), 61–87. crossref

Widodo. (2000). Studies on biological control of Fusarium basal rot of onion caused by Fusarium oxysporum f. sp. cepae. Hokkaido University. Retrieved from website

Wongkaew, P., & Homkratoke, T. (2009). Enhancement of soil microbial metabolic activity in tomato field plots by chitin application. Asian Journal of Food and Agro-Industry, 2009(Special Issue), S325–S335. Retrieved from pdf

Wu, X., Shan, Y., Li, Y., Li, Q., & Wu, C. (2020). The soil nutrient environment determines the strategy by which Bacillus velezensis HNO3 suppresses Fusarium wilt in banana plants. Frontiers in Plant Science, 11, 599904. crossref

Xu, Y., Gallert, C., & Winter, J. (2008). Chitin purification from shrimp wastes by microbial deproteination and decalcification. Applied Microbiology and Biotechnology, 79, 687–697. crossref

Yin, H., Zhao, X., & Du, Y. (2010). Oligochitosan: A plant diseases vaccine-A review. Carbohydrate Polymers, 82(1), 1–8. crossref

Zhang, P., & Chen, K. (2009). Age-dependent variations of volatile emissions and inhibitory activity toward Botrytis cinerea and Fusarium oxysporum in tomato leaves treated with chitosan oligosaccharide. Journal of Plant Biology, 52, 332–339. crossref

Zhou, D., Jing, T., Chen, Y., Wang, F., Qi, D., Feng, R., Xie, J., & Li, H. (2019). Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil. BMC Microbiology, 19, 161. crossref


Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.