Formation of Production Characters of Soya Genotypes [Glycine max (L.) Merr.] in the Areas of South-East Kazakhstan with Sufficient and Limited Water Supply

Svetlana Vladimirovna Didorenko, Raushan Saylauvna Yerzhebayeva, Dzuldyz Bakaevna Abildaeva, A. A. Amangeldiyeva


Moisture stress is a major environmental factor that limits the soy (Glycine max (L.) Merr.) yield worldwide. This study aimed to evaluate production characters of 98 varieties and collection samples of soy in the fields of the Almaty region of the Republic of Kazakhstan with and without irrigation. The experiment used a combination of features – weight of seeds from a plot, weight of 1,000 seeds, and seed plumpness – as the main markers for drought resistance assessment. Based on a comprehensive assessment of the working collection, soybean genotypes with high drought resistance were identified. These genotypes are useful genetic materials for soy breeding programs with the aim to increase yields and drought resistance. Varieties of the maturity group 00 can be cultivated in the Almaty region without irrigation, since these accessions avoid moisture stress by shortening the vegetation period. These samples can also be recommended for cultivation in non-irrigared areas of Eastern and Northern Kazakhstan. The highest productivity potential in the Almaty region was found in varieties of the maturity group II. However, their cultivation without irrigation will lead to a maximum decrease in yield.


Collection; Crop yield; Drought resistance; Irrigation; Non-irrigated agriculture

Full Text:



Abate, T., Alene, A. D., Bergvinson, D., Shiferaw, B., Silim, S., Orr, A., & Asfaw, S. (2012). Tropical grain legumes in Africa and South Asia: Knowledge and opportunities. Nairobi, Kenya: International Crops Research Institute for the Semi-Arid Tropics. Retrieved from

Agro-archive. (2014a). Особенности возделывания сои на орошаемых землях Ставрополья. Retrieved from

Agro-archive. (2014b). Водопотребление сои в Ставропольском крае. Retrieved from

AgroDialog. (2015). Соя и орошение. Retrieved from

AgroDialog. (2020). Weakness and seed performance. Retrieved from

Amangeldiyeva, A. A., Daniyarova, A. K., Alchimbaeva, P. A., Anapiyayev, B. B., Didorenko, S. V., & Erzhebaiyeva, R. S. (2019). Assessment of soybean collection samples by anatomical, morphological, physiological and biochemical characteristics of drought tolerance. Experimental Biology, 78(1), 88–98.

American Soybean Association. (2018). Soy Stats 2018: A Reference Guide to Soybean Facts and Figures. Retrieved from

Battisti, R., & Sentelhas, P. C. (2015). Drought tolerance of Brazilian soybean cultivars simulated by a simple agrometeorological yield model. Experimental Agriculture, 51(2), 285–298.

Battisti, R., & Sentelhas, P. C. (2017). Improvement of soybean resilience to drought through deep root system in Brazil. Agronomy Journal, 109(4), 1612–1622.

Daryanto, S., Wang, L., & Jacinthe, P.-A. (2015). Global synthesis of drought effects on food legume production. PLoS ONE, 10(6), e0127401.

Didorenko, S. V., Erzhebaeva, R. S., & Amangeldieva, A. A. (2018). The dynamics of the passage of phenological phases of the collection of soybeans in depending on the irrigation regime in the conditions of the Almaty region. In Тенденции Развития Науки и Образования (pp. 1–7).

EOS. (2019). Soil moisture control: An essential farming constituent. Retrieved from

Erzhebaeva, R. S., Didorenko, S. V, & Daniyarova, A. K. (2015). Оценка засухоустойчивости сортов сои по анатомо-морфологическим и физиологическим признакам / қытай бұршақтың анотомия – морфологиялық белгілері бойынша құрғақшылыққа төзімді сорттарын бағалау. Experimental Biology, 65(3), 284–291. Retrieved from

Erzhebaeva, R. S., Didorenko, S. V., Kudaibergenov, M. S., Daniyarova, A. K., & Amangeldieva, A. A. (2019). Поиск источников засухоустойчивости среди новой коллекции Сои (Glycine max) в условиях юго-востока казахстана. Научно – Производственный Журнал «Зернобобовые и Крупяные Культуры», 3(31), 63–73.

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185–212.

Fried, H. G., Narayanan, S., & Fallen, B. (2019). Evaluation of soybean [Glycine max (L.) Merr.] genotypes for yield, water use efficiency, and root traits. PloS One, 14(2), e0212700.

Hossain, M. M., Liu, X., Qi, X., Lam, H.-M., & Zhang, J. (2014). Differences between soybean genotypes in physiological response to sequential soil drying and rewetting. The Crop Journal, 2(6), 366–380.

Iqbal, N., Hussain, S., Raza, M. A., Yang, C.-Q., Safdar, M. E., Brestic, M., … Liu, J. (2019). Drought tolerance of soybean (Glycine max L. Merr.) by improved photosynthetic characteristics and an efficient antioxidant enzyme activities under a split-root system. Frontiers in Physiology, 2019, 00786.

Ko, K.-P., Park, S. K., Yang, J. J., Ma, S. H., Gwack, J., Shin, A., … Yoo, K.-Y. (2013). Intake of soy products and other foods and gastric cancer risk: A prospective study. Journal of Epidemiology, 23(5), 337–343.

Kunert, K. J., Vorster, B. J., Fenta, B. A., Kibido, T., Dionisio, G., & Foyer, C. H. (2016). Drought stress responses in soybean roots and nodules. Frontiers in Plant Science, 7, 1015.

Li, T., Didorenko, S., Orazbayeva, U., Spankulova, Z., Tashkenova, A., & Birimzhanova, Z. (2013). Biochemical indicators of soybean’s draughtresistance. Eurasian Journal of Applied Biotechnology, 3, 35–40. Retrieved from

Licht, M. (2014). Soybean growth and development. Iowa State University Extension and Outreach. Retrieved from

Mertz-Henning, L. M., Ferreira, L. C., Henning, F. A., Mandarino, J. M. G., Santos, E. D., Oliveira, M. C. N. D., … Neumaier, N. (2018). Effect of water deficit-induced at vegetative and reproductive stages on protein and oil content in soybean grains. Agronomy, 8(1), 3.

Minister of Agriculture of the Republic of Kazakhstan. (2019). The state register of selection achievements recommended for use in the Republic of Kazakhstan. Retrieved from

Ministry of National Economy. (2020). Data of committee on statistics of the Republic of Kazakhstan. Retrieved from

Novikov, V. M. (2014). Formation of productive moisture and water connsumption by legu-minous and groat crops under the influence of methods of soil cul-tivation and fertilizings. Legumes and Groat Crops, 1(9), 91–99. Retrieved from

Posylaeva, O. A., & Kirichenko, V. V. (2014). Variability of heat stability of seeds of soybean modern varieties under conditions of the eastern part of forest-steppe of Ukraine. Achievements of Science and Technology, 3, 215. Retrieved from

Qi, D. H., & Lee, C. F. (2014). Influence of soybean biodiesel content on basic properties of biodiesel-diesel blends. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 504–507.

Tolokonnikov, V. V., Koshkarova, T. S., Kancer, G. P., & Plusheva, N. M. (2019). Sovershenstvovanie modelirovaniya i selektsii sortov soi v usloviyakh orosheniya i usileniya atmosfernoi zasukhi. Agricultural Sciences, 1(53), 136-144.

USDA. (2020). Romania corn: Drought reduces crop production by 1.3 million metric tons - World agricultural production. Circular Series WAP 9-20. Foreign Agricultural Service, United States Department of Agriculture. Retrieved from

Zhao, T., Aleem, M., & Sharmin, R. A. (2017). Adaptation to water stress in soybean: Morphology to genetics. IntechOpen.

Zipper, S. C., Qiu, J., & Kucharik, C. J. (2016). Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes. Environmental Research Letters, 11(9), 094021.


Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.