Various pH Media Influence Production of Pseudomonas fluorescens P20 Raw Secondary Metabolites for Controlling Damping-off (Pythium sp.) in Cucumber Seedlings

Loekas Soesanto, Siti Latifah, Abdul Manan, Endang Mugiastuti, Woro Sri Suharti

Abstract


 

This research aims to determine the best pH media for the production of Pseudomonas fluorescens P20 raw secondary metabolites, its effect on controlling damping-off, and on cucumber seedling growth. In vitro test uses completely randomized design with four replicates and seven treatments consisted of pH 5.0; 5.5; 6.0; 6.5; 7.0; 7.5; and 8.0. In planta test uses a randomized block design with three replicates and ten treatments consisting of control, mancozeb 80%, and raw secondary metabolites with pH 7.0 and 7.5, and 4 concentration levels, i.e., 5, 10, 15, and 20%. Variables observe population density, inhibition ability, protease and chitinase qualitatively, germination ability, incubation period, disease incidence, the area under disease progress curve (AUDPC), crop height, number of leaves, root length, and crop fresh weight. The result shows that the best pH for the production of raw secondary metabolites is 7.0, indicated by population density as 5.68 × 1024 cfu/ml, inhibition ability as 50.8%, and the best protease and chitinase qualitatively. Application of the secondary metabolites on pH 7.0 could suppress disease intensity, incubation period, and AUDPC as 66.67, 77%, and 0%-day, respectively, and increase crop height, the number of leaves, root length, and crop fresh weight as 57.65, 37.19, 63, and 74%, respectively.



Keywords


Cucumber seedlings; Damping-off; pH media; Pseudomonas fluorescens; Raw secondary metabolites

Full Text:

PDF

References


Abdurrazak, A., Hatta, M., & Marliah, A. (2013). Pertumbuhan dan Hasil Tanaman Mentimun (Cucumis sativus L.) Akibat Perbedaan Jarak Tanam dan Jumlah Benih Per Lubang Tanam. Jurnal Agrista, 17(2), 55–59. http://www.jurnal.unsyiah.ac.id/agrista/article/view/1463

Abeyratne, G. D. D., & Deshappriya, N. (2018). The effect of pH on the biological control activities of a Trichoderma sp. against Fusarium sp. isolated from the commercial onion fields in Sri Lanka. Tropical Plant Research, 5(2), 121–128. https://doi.org/10.22271/tpr.2018.v5.i2.017

Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. https://doi.org/10.2478/v10102-009-0001-7

Alhasawi, A., & D. Appanna, V. (2017). Enhanced extracellular chitinase production in Pseudomonas fluorescens: biotechnological implications. AIMS Bioengineering, 4(3), 366–375. https://doi.org/10.3934/bioeng.2017.3.366

Almario, J., Bruto, M., Vacheron, J., Prigent-Combaret, C., Moënne-Loccoz, Y., & Muller, D. (2017). Distribution of 2,4-Diacetylphloroglucinol Biosynthetic Genes among the Pseudomonas spp. Reveals Unexpected Polyphyletism. Frontiers in Microbiology, 8, 1218. https://doi.org/10.3389/fmicb.2017.01218

Al-Zaidi, A. A., Elhag, E. A., Al-Otaibi, S. H., & Baig, M. B. (2011). Negative effects of pesticides on the environment and the farmers awareness in Saudi Arabia: A case study. Journal of Animal and Plant Sciences, 21(3), 605–611. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1057.4178&rep=rep1&type=pdf

Brugger, S.D., Baumberger, C., Jost, M., Jenni, W., Brugger, U., & Mühlemann, K. (2012). Automated counting of bacterial colony forming units on agar plates. PLoS ONE, 7(3), e33695. https://doi.org/10.1371/journal.pone.0033695.

Conway, K.E. (1985). Selective Medium for Isolation of Pythium spp. from Soil. Plant Dis. 69:393-395. https://doi.org/10.1094/PD-69-393.

Deveau, A., Gross, H., Palin, B., Mehnaz, S., Schnepf, M., Leblond, P., Dorrestein, P. C., & Aigle, B. (2016). Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions. FEMS Microbiology Ecology, 92(8), fiw107. https://doi.org/10.1093/femsec/fiw107

Fajingbesi, A. O., Anzaku, A. A., & Akande, M. (2018). Production of protease enzyme from fish guts using Pseudomonas fluorescens, Enterobacter cloacae and Bacillus megaterium. J Clin Path Lab Med. 2018; 2 (1): 1, 2(1), 1–7. https://www.alliedacademies.org/articles/production-of-protease-enzyme-from-fish-guts-using-pseudomonas-fluorescens-enterobacter-cloacae-and-bacillus-megaterium-9469.html

Jain, A., & Das, S. (2016). Insight into the Interaction between Plants and Associated Fluorescent Pseudomonas spp. International Journal of Agronomy, 2016, 1–8. https://doi.org/10.1155/2016/4269010

Jin, Q., & Kirk, M. F. (2018). pH as a Primary Control in Environmental Microbiology: 1. Thermodynamic Perspective. Frontiers in Environmental Science, 6(01 May 2018). https://doi.org/10.3389/fenvs.2018.00021

Khabbaz, S. E., & Abbasi, P. A. (2014). Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber. Canadian Journal of Microbiology, 60(1), 25–33. https://doi.org/10.1139/cjm-2013-0675

Kim, C., Wilkins, K., Bowers, M., Wynn, C., & Ndegwa, E. (2018). Influence of pH and temperature on growth characteristics of leading foodborne pathogens in a laboratory medium and select food beverages. Austin Food Science, 3(1), id1031. https://vtechworks.lib.vt.edu/bitstream/handle/10919/81940/afs-v3-id1031_Bacterial growth curve.pdf

Lamichhane, J. R., Dürr, C., Schwanck, A. A., Robin, M.-H., Sarthou, J.-P., Cellier, V., Messéan, A., & Aubertot, J.-N. (2017). Integrated management of damping-off diseases. A review. Agronomy for Sustainable Development, 37(2), 10. https://doi.org/10.1007/s13593-017-0417-y

Li, W., Yamaguchi, S., Khan, M. A., An, P., Liu, X., & Tran, L.-S. P. (2016). Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.01235

Marathe, R. J., Phatake, Y. B., Shaikh, A. C., Shinde, B. P., & Gajbhiye, M. H. (2017). Effect of IAA produced by Pseudomonas aeruginosa 6a (bc4) on seed germination and plant growth of Glycin max. Journal of Experimental Biology and Agricultural Sciences, 5(3), 351–358. https://doi.org/10.18006/2017.5(3).351.358

Masi, M., Nocera, P., Reveglia, P., Cimmino, A., & Evidente, A. (2018). Fungal Metabolites Antagonists towards Plant Pests and Human Pathogens: Structure-Activity Relationship Studies. Molecules, 23(4), 834. https://doi.org/10.3390/molecules23040834

Ministry of Agriculture. (2018). Statistik pertanian. http://epublikasi.setjen.pertanian.go.id/arsip-perstatistikan/160-statistik/statistik-pertanian/586-statistik-pertanian-2020

Neidig, N., Paul, R. J., Scheu, S., & Jousset, A. (2011). Secondary Metabolites of Pseudomonas fluorescens CHA0 Drive Complex Non-Trophic Interactions with Bacterivorous Nematodes. Microbial Ecology, 61(4), 853–859. https://doi.org/10.1007/s00248-011-9821-z

Ngegba, P. M., Kanneh, S. M., Bayon, M. S., Ndoko, E. J., & Musa, P. D. (2018). Fungicidal effect of three plants extracts in control of four phytopathogenic fungi of tomato (Lycopersicum esculentum L.) fruit rot. International Journal of Environment, Agriculture and Biotechnology, 3(1), 112–117. https://doi.org/10.22161/ijeab/3.1.14

Niranjana, J., & Bavithara, P. S. (2020). A Comparative Study on Screening Methods for the Detection of Protease Activity Containing Bacteria. International Journal of Science and Research (IJSR), 9(1), 169–171. https://www.ijsr.net/get_abstract.php?paper_id=ART20203705

Noordzij, M., Dekker, F. W., Zoccali, C., & Jager, K. J. (2010). Measures of Disease Frequency: Prevalence and Incidence. Nephron Clinical Practice, 115(1), c17–c20. https://doi.org/10.1159/000286345

Panth, M., Hassler, S. C., & Baysal-Gurel, F. (2020). Methods for Management of Soilborne Diseases in Crop Production. Agriculture, 10(1), 16. https://doi.org/10.3390/agriculture10010016

Rodarte, M. P., Dias, D. R., Vilela, D. M., & Schwan, R. F. (2011). Proteolytic activities of bacteria, yeasts and filamentous fungi isolated from coffee fruit (Coffea arabica L.). Acta Scientiarum. Agronomy, 33(3), 457–464. https://doi.org/10.4025/actasciagron.v33i3.6734

Roylawar, P., Khandagale, K., Randive, P., Shinde, B., Murumkar, C., Ade, A., Singh, M., Gawande, S., & Morelli, M. (2021). Piriformospora indica primes onion response against Stemphylium leaf blight disease. Pathogens, 10(9), 1085. https://doi.org/10.3390/pathogens10091085.

Sahu, T. & Sahu, J. (2015). Cucumis sativus (cucumber): A review on its pharmacological activity. Journal of Applied Pharmaceutical Research 3(1), 4-9. https://www.japtronline.com/index.php/joapr/article/view/46

Saima, Kuddus, M., Roohi, & Ahmad, I. Z. (2013). Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. Journal of Genetic Engineering and Biotechnology, 11(1), 39–46. https://doi.org/10.1016/j.jgeb.2013.03.001

Simko, I., & Piepho, H.-P. (2012). The Area Under the Disease Progress Stairs: Calculation, Advantage, and Application. Phytopathology®, 102(4), 381–389. https://doi.org/10.1094/PHYTO-07-11-0216

Singh, M. C., Singh, J. P., Pandey, S. K., Mahay, D., & Shrivastva, V. (2017). Factors Affecting the Performance of Greenhouse Cucumber Cultivation-A Review. International Journal of Current Microbiology and Applied Sciences, 6(10), 2304–2323. https://doi.org/10.20546/ijcmas.2017.610.273

Slama, H. Ben, Cherif-Silini, H., Chenari Bouket, A., Qader, M., Silini, A., Yahiaoui, B., Alenezi, F. N., Luptakova, L., Triki, M. A., Vallat, A., Oszako, T., Rateb, M. E., & Belbahri, L. (2019). Screening for Fusarium Antagonistic Bacteria From Contrasting Niches Designated the Endophyte Bacillus halotolerans as Plant Warden Against Fusarium. Frontiers in Microbiology, 9(11 January 2019), 3236. https://doi.org/10.3389/fmicb.2018.03236

Smolińska, U., & Kowalska, B. (2018). Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum –– a review. Journal of Plant Pathology, 100(1), 1–12. https://doi.org/10.1007/s42161-018-0023-0

Soesanto, L., Mugiastuti, E., & Rahayuniati, R. (2013a). Aplikasi Formula Cair Pseudomonas fluorescens P60 untuk Menekan Penyakit Virus Cabai Merah. Jurnal Fitopatologi Indonesia, 9(6), 179–185. https://doi.org/10.14692/jfi.9.6.179

Soesanto, L., Manan, A., Wachjadi, M., & Mugiastuti, E. (2013b). Ability Test Of Several Antagonists To Control Potato Bacterial Wilt in the Field. AGRIVITA Journal of Agricultural Science, 35(1), 30–35. https://doi.org/10.17503/Agrivita-2013-35-1-p030-035

Sukmawati & Hardianti, F. (2018). Analisis total plate count (TPC) mikroba pada ikan asin kakap di Kota Sorong Papua Barat. Jurnal Biodjati, 3(1), 72-78. https://journal.uinsgd.ac.id/index.php/biodjati/article/view/2368

Sutton, J. C., Sopher, C. R., Owen-Going, T. N., Liu, W., Grodzinski, B., Hall, J. C., & Benchimol, R. L. (2006). Etiology and epidemiology of Pythium root rot in hydroponic crops: current knowledge and perspectives. Summa Phytopathologica, 32(4), 307–321. https://doi.org/10.1590/S0100-54052006000400001

Tank, J. G., Pandya, R. V., & Thaker, V. S. (2015). IAA and zeatin controls cell division and endoreduplication process in quiescent center cells of Allium cepa root. Indian Journal of Plant Physiology, 20(2), 124–129. https://doi.org/10.1007/s40502-015-0148-5

Tian, Y., Guan, B., Zhou, D., Yu, J., Li, G., & Lou, Y. (2014). Responses of Seed Germination, Seedling Growth, and Seed Yield Traits to Seed Pretreatment in Maize ( Zea mays L.). The Scientific World Journal, 2014, 34630. https://doi.org/10.1155/2014/834630

Wickramasinghe, N. N., Ravensdale, J., Coorey, R., Chandry, S. P., & Dykes, G. A. (2019). The Predominance of Psychrotrophic Pseudomonads on Aerobically Stored Chilled Red Meat. Comprehensive Reviews in Food Science and Food Safety, 18(5), 1622–1635. https://doi.org/10.1111/1541-4337.12483

Zuyasna, Z., Zaitun, Z., & Alfina, S. (2009). Pertumbuhan dan hasil tiga varietas mentimun (Cucumis sativus L.) pada medium hidroponik tertentu. Jurnal Agrista, 13(3), 104–112. http://www.jurnal.unsyiah.ac.id/agrista/article/view/937




DOI: http://doi.org/10.17503/agrivita.v44i1.2730

Copyright (c) 2022 The Authors (s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.