Suitable Combination Between Beauveria bassiana (Balsamo) Vuillemin and Four Plant Leaf Extracts to Control Spodoptera litura (Fabricius)

Aminudin Afandhi, Vivi Renna Pratiwi, Mochammad Syamsul Hadi, Yogo Setiawan, Retno Dyah Puspitarini

Abstract


Lepidopteran pests such as S. litura might cause yield losses in many crops especially during pest outbreak. The combinations of microbial and botanical insecticides were expected to increase the effectivity in controlling the respected insect pest. This research aimed to evaluate the combination of plant extracts and B. bassiana to control S. litura. The compatibility of B. bassiana with different plant extracts such as Neem, Chinaberry, Mexican Sunflower and Lantana leaves was studied in the laboratory. The compatibility was evaluated based on B. bassiana colony growth, conidia density, conidia viability, and mortality of S. litura larvae. After 12 days after application (DAA), colony growth of B. bassiana was reduced by all plant extract treatments. For the mortality of S. litura, the combined mixture of B. bassiana and 0.25% Chinaberry extract resulted the maximum mortality rate (44%). After 12 and 15 DAA, the 0.25% Chinaberry showed the highest colony growth (3.93 and 4.37 cm). The most suitable treatment was B. bassiana with 0.25% Chinaberry that had the conidial density at 1.77 x 108 conidia/ml and conidial viability of 75.63% and can enhanced the mortality of S. litura larvae.

Keywords


Beauveria bassiana; Compatibility; Conidial density and viability; Larval mortality; Plant extracts

Full Text:

PDF

References


Abbott, W. S. (1925). A method for computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267. https://doi.org/10.1093/jee/18.2.265a

Ahmad, M., & Mehmood, R. (2015). Monitoring of resistance to new chemistry insecticides in Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Journal of Economic Entomology, 108(3), 1279–1288. https://doi.org/10.1093/jee/tov085

Ali, S., Farooqi, M. A., Sajjad, A., Ullah, M. I., Qureshi, A. K., Siddique, B., … Asghar, A. (2018). Compatibility of entomopathogenic fungi and botanical extracts against the wheat aphid, Sitobion avenae (Fab.) (Hemiptera: Aphididae). Egyptian Journal of Biological Pest Control, 28, 97. https://doi.org/10.1186/s41938-018-0101-9

Deb, L., Rajesh, T., Majumdar, D., & Tombisana, R. K. (2017). Evaluation of biological compatibility of Beauveria bassiana with fungicides and botanicals. Journal of Pharmacognosy and Phytochemistry, SP1, 1120–1124. Retrieved from https://pdfs.semanticscholar.org/28fd/60a5580fa8b0334c61771707bf30ccbb5f18.pdf

Depieri, R. A., Martinez, S. S., & Menezes Jr., A. O. (2005). Compatibility of the fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycetes) with extracts of neem seeds and leaves and the emulsible oil. Neotropical Entomology, 34(4), 601–606. https://doi.org/10.1590/s1519-566x2005000400010

Dhar, S., Jindal, V., Jariyal, M., & Gupta, V. K. (2019). Molecular characterization of new isolates of the entomopathogenic fungus Beauveria bassiana and their efficacy against the tobacco caterpillar, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control, 29, 8. https://doi.org/10.1186/s41938-019-0110-3

Fernández-Grandon, G. M., Harte, S. J., Ewany, J., Bray, D., & Stevenson, P. C. (2020). Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. Plants, 9(2), 173. https://doi.org/10.3390/plants9020173

Fu, X., Zhao, X., Xie, B., Ali, A., & Wu, K. (2015). Seasonal pattern of Spodoptera litura (Lepidoptera: Noctuidae) migration across the Bohai Strait in Northern China. Journal of Economic Entomology, 108(2), 525–538. https://doi.org/10.1093/jee/tov019

Garrido-Jurado, I., Ruano, F., Campos, M., & QuesadaMoraga, E. (2011). Effects of soil treatments with entom pathogenic fungi on soil dwe ling nontarget arthropods at a commercial olive orchard. Biological Control, 59(2), 239–244. https://doi. org/10.1016/j.biocontrol.2011.07.001

Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Köhl, J., … Stewart, A. (2012). Have biopesticides come of age? Trends in Biotechnology, 30(5), 250–258. https://doi.org/10.1016/j.tibtech.2012.01.003

Gouli, V., Gouli, S., & Kim, J. S. (2014). Production of Beauveria bassiana air conidia by means of optimization of biphasic system technology. Brazilian Archives of Biology and Technology, 57(4), 571–577. https://doi.org/10.1590/S1516-8913201401745

Houguo, Q., Zhengxiang, Y., Shuijin, H., Jian, D., & Renhua, L. (2004). The correlation of the different host plants with preference level, life duration and survival rate of Spodoptera litura Fabricius. Chinese Journal of Eco-Agriculture, 12(2), 40–42. Retrieved from https://europepmc.org/article/cba/403189

Islam, M. T., & Omar, D. B. (2012). Combined effect of Beauveria bassiana with neem on virulence of insect in case of two application approaches. The Journal of Animal and Plant Sciences, 22(1), 77–82. Retrieved from http://www.thejaps.org.pk/docs/v-22-1/29.pdf

Islam, Md T., Castle, S. J., & Ren, S. (2010). Compatibility of the insect pathogenic fungus Beauveria bassiana with neem against sweetpotato whitefly, Bemisia tabaci, on eggplant. Entomologia Experimentalis et Applicata, 134(1), 28–34. https://doi.org/10.1111/j.1570-7458.2009.00933.x

Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45–66. https://doi.org/10.1146/annurev.ento.51.110104.151146

Jaber, L. R., Araj, S.-E., & Qasem, J. R. (2018). Compatibility of endophytic fungal entomopathogens with plant extracts for the management of sweetpotato whitefly Bemesia tabaci Gennadius (Homoptera: Aleyrodidae). Biological Control, 117, 164–171. https://doi.org/10.1016/j.biocontrol.2017.11.009

James, R. R. (2003). Combining azadirachtin and Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) to control Bemisia argentifolii (Homoptera: Aleyrodidae). Journal of Economic Entomology, 96(1), 25–30. https://doi.org/10.1603/0022-0493-96.1.25

Nana, P., Maniania, N. K., Maranga, R. O., Boga, H. I., Kutima, H. L., & Eloff, J. N. (2012). Compatibility between Calpurnia aurea leaf extract, attraction aggregation, and attachment pheromone and entomopathogenic fungus Metarhizium anisopliae on viability, growth, and virulence of the pathogen. Journal of Pest Science, 85, 109–115. https://doi.org/10.1007/s10340-011-0399-5

Ortiz-Urquiza, A., Luo, Z., & Keyhani, N. O. (2015). Improving mycoinsecticides for insect biological control. Applied Microbiology and Biotechnology, 99, 1057–1068. https://doi.org/10.1007/s00253-014-6270-x

Revathi, K., Chandrasekaran, R., Thanigaivel, A., Kirubakaran, S. A., & Senthil-Nathan, S. (2014). Biocontrol efficacy of protoplast fusants between Bacillus thuringiensis and Bacillus subtilis against Spodoptera litura Fabr. Archives of Phytopathology and Plant Protection, 47(11), 1365–1375. https://doi.org/10.1080/03235408.2013.840999

Sain, S. K., Monga, D., Kumar, R., Nagrale, D. T., Hiremani, N. S., & Kranthi, S. (2019). Compatibility of entomopathogenic fungi with insecticides and their efficacy for IPM of Bemisia tabaci in cotton. Journal of Pesticide Science, 44(2), 97–105. https://doi.org/10.1584/jpestics.D18-067

Samuels, R. I., Coracini, D. L. A., Martins dos Santos, C. A., & Gava, C. A. T. (2002). Infection of Blissus antillus (Hemiptera: Lygaeidae) eggs by the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Biological Control, 23(3), 269–273. https://doi.org/10.1006/bcon.2001.1009

Seyed-Talebi, F. S., Kheradmand, K., Talaei-Hassanloui, R., & Talebi-Jahromi, K. (2012). Sublethal effects of Beauveria bassiana on life table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Biocontrol Science and Technology, 22(3), 293–303. https://doi.org/10.1080/09583157.2012.655709

Singleton, P., & Sainsbury, D. (2006). Dictionary of microbiology and molecular biology (3rd ed.). West Sussex, England: John Wiley & Sons, Ltd. Retrieved from https://enggbiochem.files.wordpress.com/2014/08/dictionary-ofmicrobiology-molecular-biology.pdf

Sousa, L. A. D., Pires Júnior, H. B., Soares, S. F., Ferri, P. H., Ribas, P., Lima, E. M., … Borges, L. M. F. (2011). Potential synergistic effect of Melia azedarach fruit extract and Beauveria bassiana in the control of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in cattle infestations. Veterinary Parasitology, 175(3–4), 320–324. https://doi.org/10.1016/j.vetpar.2010.10.012

Taskeen-Un-Nisa, Wani, A. H., Bhat, M. Y., Pala, S. A., & Mir, R. A. (2011). In vitro inhibitory effect of fungicides and botanicals on mycelial growth and spore germination of Fusarium oxysporum. Journal of Biopesticides, 4(1), 53–56. Retrieved from http://www.jbiopest.com/users/lw8/efiles/vol_4_1_238.pdf

Taylor, B., Edgington, S., Luke, B., & Moore, D. (2013). Yield and germination of the entomopathogenic fungus Beauveria bassiana when grown on different rice preparations. Journal of Stored Products Research, 53, 23–26. https://doi.org/10.1016/j.jspr.2013.02.004

Tong, H., Su, Q., Zhou, X., & Bai, L. (2013). Field resistance of Spodoptera litura (Lepidoptera: Noctuidae) to organophosphates, pyrethroids, carbamates and four newer chemistry insecticides in Hunan, China. Journal of Pest Science, 86, 599–609. https://doi.org/10.1007/s10340-013-0505-y

Tuan, P. P. (2014). Dermal toxicity of white muscardine fungus, Beauveria bassiana (Bals.) Vuill. on vertebrates. International Journal of Innovative Science, Engineering & Technology, 1(10), 122–128. Retrieved from http://www.ijiset.com/v1s10/IJISET_V1_I10_17.pdf

Usha, J., Babu, M. N., & Padmaja, V. (2014). Detection of compatibility of entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. with pesticides, fungicides and botanicals. International Journal of Plant, Animal and Environmental Sciences, 4(2), 613–624. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20143220338

Vincent, J. M. (1947). Distortion of fungal hyphæ in the presence of certain inhibitors. Nature, 159, 850. https://doi.org/10.1038/159850b0




DOI: http://doi.org/10.17503/agrivita.v42i2.2678

Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.