Effects of Curcumin on Stability and Efficacy of Neem Leaves Extract as Botanical Insecticides
Abstract
Botanical insecticides are considered biodegradable, environmentally compatible, and less toxic to non-target organisms than synthetic insecticides. Unfortunately, they are not attractive to Indonesian farmers due to its instability against light, temperature, and microbes, as well as they, have short storage time. This research was intended to produce a distinctive botanical insecticide that is resilient against the light, microbes, and durable. The role of curcumin in the stability and efficacy of neem (Azadirachta indica) leaves extract as a botanical insecticide against soybean pod sucking bug, Riptortus linearis was evaluated in the laboratory. This research was conducted at the Organic Chemistry Laboratory of Chemistry Department, Faculty of Science and Technology Airlangga University and the Plant Protection Laboratory, Faculty of Agriculture University of Wijaya Kusuma Surabaya, Indonesia, from March to October 2016. The results explained that curcumin is no effect on increase the stability of neem leaves extract solution towards UV light irradiation. However, it can increase the insecticide activity of neem leaves extract solution up to 96% mortality against soybean pod sucking bug, R. linearis. The increase of the bioactivity refers to the anti insecticidal activity of ferulic acid formed from the degradation of curcumin.
Keywords
Full Text:
PDFReferences
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267. crossref
Abdul Razak, T., Santhakumar, T., Mageswari, K., & Santhi, S. (2014). Studies on efficacy of certain neem products against Spodoptera litura (Fab.). Journal of Biopesticides, 7(Supp.), 160–163. Retrieved from pdf
Asogwa, E. U., Ndubuaku, T. C. N., Ugwu, J. A., & Awe, O. O. (2010). Prospects of botanical pesticides from neem, Azadirachta indica for routine protection of cocoa farms against the brown cocoa mirid – Sahlbergella singularis in Nigeria. Journal of Medicinal Plants Research, 4(1), 001–006. Retrieved from https://www.docdeveloppement-durable.org/file/Arbres-Bois-de-Rapport-Reforestation/FICHES_ARBRES/Neem-Azadirachta indica/Prospects of botanical pesticides against the brown cocoa miridl.pdf
Aznam, N. (2004). Uji aktivitas antioksidan ekstrak kunyit (Curcuma domestica, Val). In H. Sutrisno, Sahid, Y. Wiyanto, & Y. Wibowo (Eds.), Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA (pp. 111–117). Yogyakarta, ID: Fakultas Matematikan dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta. Retrieved from pdf
Balasubashini, M. S., Rukkumani, R., Viswanathan, P., & Menon, V. P. (2004). Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytotherapy Research, 18(4), 310-314. crossref
Borra, S. K., Gurumurthy, P., Mahendra, J., Jayamathi, K. M., Cherian, C. N., & Ramchand. (2013). Antioxidant and free radical scavenging activity of curcumin determined by using different in vitro and ex vivo models. Journal of Medicinal Plants Research, 7(36), 2680–2690. Retrieved from pdf
Campos, E. V. R., de Oliveira, J. L., Pascoli, M., de Lima, R., & Fraceto, L. F. (2016). Neem oil and crop protection: From now to the future. Frontiers in Plant Science, 7, 1494. crossref
Castillo-Sánchez, L. E., Jiménez-Osornio, J. J., & Delgado-Herrera, M. A. (2010). Secondary metabolites of the annonaceae, solanaceae and meliaceae families used as biological control of insects. Tropical and Subtropical Agroecosystems. 12(3), 445-462. Retrieved from website
Chattree, P. V., Mishra, M. S., & Srivastava, A. N. (2016). Residual effect of neem leaf extract on the mortality of Lipaphis erysimi and its larvae. IOSR Journal of Environmental Science, Toxicology and Food Technology, 10(10), 115–119. crossref
Cheng, Y. H., Yang, S. H., Yang, K. C., Chen, M. P., & Lin, F. H. (2011). The effects of ferulic acid on nucleus pulposus cells under hydrogen peroxideinduced oxidative stress. Process Biochemistry, 46(8), 1670–1677. crossref
Danciu, C., Vlaia, L., Fetea, F., Hancianu, M., Coricovac, D. E., Ciurlea, S. A., … Trandafirescu, C. (2015). Evaluation of phenolic profile, antioxidant and anticancer potential of two main representants of Zingiberaceae family against B164A5 murine melanoma cells. Biological Research, 48(1), 1. crossref
Diaz-Najera, J. F., Ayvar-Serna, S., Vargas-Hernandez, M., Mena-Bahena, A., Alvarado-Gomez, O. G., & Vargas-Nava, R. (2019). Inhibitory effect of the bioagents Trichoderma spp. and plant extracts in vitro on Rhizoctonia solani. International Journal of Agriculture and Biological Sciences, 3(10), 76-83. crossref
dos Santos Nascimento, L. B., dos Santos Moreira, N., Leal-Costa, M. V., Costa, S. S., Tavares, E. S. (2015). Induction of wound-peridermlike tissue in Kalanchoe pinnata (Lam.) Pers. (Crassulaceae) leaves as a defence response to high UV-B radiation levels. Annals of Botany, 116(5), 763–769. https://doi.org/10.1093/aob/mcv129Esparza-Díaz, G., Villanueva-Jiménez, J. A., LópezCollado, J., & Osorio-Acosta, F. (2011). Multiinsecticide extractive technology of neem seeds for small growers. Tropical and Subtropical Agroecosystems, 13(3), 409–415. Retrieved from website
Ghoneim, K., & Hamadah, K. (2017). Antifeedant activity and detrimental effect of Nimbecidine (0.03% Azadirachtin) on the nutritional performance of Egyptian cotton leaf worm Spodoptera littoralis Boisd. (Noctuidae: Lepidoptera). Bio Bulletin, 3(1), 39–55. Retrieved from https://www. biobulletin.com/pdf/5 BB DR KAREM GHONEIM 233 Antifeedant activity and detrimental effect of Nimbecidine.pdf
Gohil, K. J., Kshirsagar, S. B., & Sahane, R. S. (2012). Ferulic acid - a comprehensive pharmacology of animportant bioflavonoid. International Journal of Pharmaceutical Sciences and Research, 3(1), 700-710. Retrieved from website
Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). Toronto, CA: John Wiley & Sons, Inc. Retrieved from pdf
Gul, F. Z., & Basheer, M. (2016). Curcumin as natural bioactive compound of medicinal plant Curcuma longa to combat against different diseases. Journal of Ayurvedic and Herbal Medicine, 2(5), 192–199. Retrieved from pdf
Huang, G. Y., Cui, C., Wang, Z. P., Li, Y. Q., Xiong, L. X., Wang, L. Z., … Zhao, W. G. (2013). Synthesis and characteristics of (Hydrogenated) ferulic acid derivatives as potential antiviral agents with insecticidal activity. Chemistry Central Journal, 7(1), 33. crossref
Jarvis, A. P., Johnson, S., & Morgan, E. D. (1998). Stability of the natural insecticide azadirachtin in aqueous and organic solvents. Pesticide Science, 53(3), 217–222. https://doi.org/10.1002/(SICI)1096-9063(199807)53:3<217::AIDPS766>3.0.CO;2-9
Johnson, S., Dureja, P., & Dhingra, S. (2003). Photostabilizers for azadirachtin-A (a neembased pesticide). Journal of Environmental Science and Health - Part B, 38(4), 451–462. crossref
Kim, H. Y., Park, J., Lee, K. H., Lee, D. U., Kwak, J. H., Kim, Y. S., & Lee, S. M. (2011). Ferulic acid protects against carbon tetrachloride-induced liver injury in mice. Toxicology, 282(3), 104–111. crossref
Kumavat, S. D., Chaudhari, Y. S., Borole, P., Mishra, P., Shenghani, K., & Duvvuri, P. (2013). Degradation studies of curcumin. International Journal of Pharmacy Review and Research, 3(2), 50–55. Retrieved from pdf
Lee, B. H., Choi, H. A., Kim, M. R., & Hong, J. (2013). Changes in chemical stability and bioactivities of curcumin by ultraviolet radiation. Food Science and Biotechnology, 22, 279–282. crossref
Lina, E. C., Yulianti, N., Ernis, G., Arneti, & Nelly, N. (2018). Storage temperature of botanical insecticide mixture formulations and its activity againsts Crocidolomia pavonana (F.) (Lepidoptera: Crambidae). AGRIVITA Journal of Agricultural Science, 40(3), 498–505. crossref
Madaki, F. M. (2015). Studies on the effect of temperature, light and storage on the stability of neem (Azadirachta indica A. Juss) seeds oil extract. IOSR Journal of Pharmacy and Biological Sciences, 10(2), 46–50. Retrieved from pdf
Mahdavian, A. R., Ashjari, M., & Mobarakeh, H. S. (2008). Nanocomposite particles with core‐shell morphology. I. Preparation and characterization of Fe3O4–poly(butyl acrylate‐styrene) particles via miniemulsion polymerization. Journal of Applied Polymer Science, 110(2), 1242-1249. crossref
Massaguni, R., & Md Latip, S. N. H. (2012). Neem crude extract as potential biopesticide for controlling golden apple snail, Pomacea canaliculata. In R. P. Soundararajan (Ed.), Pesticides - Advances in Chemical and Botanical Pesticides. IntechOpen. crossref
Mirzaee, F., Kooshk, M. R. A., Rezaei-Tavirani, M., & Khodarahmi, R. (2014). Protective effects of accompanying proteins on light- and watermediated degradation of Curcumin. Journal of Paramedical Sciences, 5(1), 50–57. Retrieved from website
Nabati, M., Mahkam, M., & Heidari, H. (2014). Isolation and characterization of curcumin from powdered rhizomes of turmeric plant marketed in Maragheh city of Iran with soxhlet technique. Iranian Chemical Communication, 2, 236–243. Retrieved from website
Olfat, A. R., & El-Shiekh, Y. W. A. (2012). Degradation of neem oil 90% EC (AZADIRACHTIN) under storage conditions and its insecticidal activity against cotton leafworm S. littoralis. Researcher, 4(3), 77–83. Retrieved from pdf
Ou, L., Kong, L. Y., Zhang, X. M., & Niwa, M. (2003). Oxidation of ferulic acid by Momordica charantia peroxidase and related anti-inflammation activity changes. Biological and Pharmaceutical Bulletin, 26(11), 1511–1516. crossref
Patzke, H., & Schieber, A. (2018). Growth-inhibitory activity of phenolic compounds applied in an emulsifiable concentrate - ferulic acid as a natural pesticide against Botrytis cinerea. Food Research International, 113, 18–23. crossref
Paulucci, V. P., Couto, R. O., Teixeira, C. C. C., & Freitas, L. A. P. (2013). Optimization of the extraction of curcumin from Curcuma longa rhizomes. Revista Brasileira de Farmacognosia, 23(1), 94–100. crossref
Rashid, M., & Ahmad, A. (2013). The effect of neem (Azadirachta indica) leaves extract on the ecdysis and mortality of immature stages of common house mosquito Culex pipiens fatigans. Biologia (Pakistan), 59(2), 213–219. Retrieved from pdf
Roychoudhury, R. (2016). Neem products. In Omkar (Ed.), Ecofriendly Pest Management for Food Security (pp. 545–562). San Diego: Academic Press. crossref
Waseem, A., & Amit K., C. (2020). Photochemical properties and photodegradation mechanism of the tricyclic antidepressant drug dosulepin. Research Journal of Chemistry and Environment, 24(3), 98-102. Retrieved from website
Wilson, K. E., Thompson, J. E., Huner, N. P., & Greenberg, B. M. (2001). Effects of ultraviolet‐a exposure on ultraviolet‐b–induced accumulation of specific flavonoids in Brassica napus. Photochemistry and Photobiology, 7(6), 678-684. crossref
Zebib, B., Mouloungui, Z., & Noirot, V. (2010). Stabilization of curcumin by complexation with divalent cations in glycerol/water system. Bioinorganic Chemistry and Applications, 2010(292760), 1–8. crossref
Zheng, Y., Gao, W., Slusser, J. R., Grant, R. H., & Wang, C. (2003). Yield and yield formation of field winter wheat in response to supplemental solar ultraviolet-B radiation. Agricultural and Forest Meteorology, 120(1–4), 279-283. crossref
DOI: http://doi.org/10.17503/agrivita.v42i2.2651
Copyright (c) 2020 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.