Essential Oil Components, Metabolite Profiles, and Idioblast Cell Densities in Galangal (Kaempferia galanga L.) at Different Agroecology
Abstract
Galangal is widely cultivated for the multifunctional plant. This study analyzed the essential oil chemical components, metabolite profiles, and idioblast cell densities in seven galangal accession grown at two different altitudes (locations A and B). The galangal accessions included: Purbalingga, Cilacap, Purworejo, Karanganyar, Pacitan, Madiun, and Galesia 2 which was used as the control. The results showed that the highest essential oil content was obtained from MAD (3.22%) at location A. The highest levels of ethyl-p-methoxycinnamate (EPMC) were obtained from PBG (74.8%) at location B and PCT (71.6%) at location A. The metabolite profiles of the galangal rhizomes were divided into two clusters based on the metabolite content. The first cluster had one accession: PCT from location A with genkwanin as the metabolite marker. The second cluster consisted of CLP from location A and PBG, MAD, and GAL2 from location B. The highest density of idioblast cells was found in PCT (90.5 cells/mm2) at location A and PBG accessions (77.1 cells/mm2) at location B. The PBG and PCT accessions can be recommended as a candidate of superior varieties based on their high EPMC content.
Keywords
Full Text:
PDFReferences
Anggraito, Y. U., Susanti, R., Iswari, R. S., Yuniastuti, A., Lisdiana, Nugrahangisih, W., … Bintari, S. H. (2018). Metabolit sekunder dari tanaman: Aplikasi dan produksi. Semarang, ID: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Semarang. Retrieved from PDF
Aragaw, M., Alamerew, S., Michael, G. H., & Tesfaye, A. (2011). Variability of ginger (Zingiber officinale Rosc.) accessions for morphological and some quality traits in Ethiopia. International Journal of Agricultural Research, 6(6), 444–457. DOI
Arbona, V., Manzi, M., de Ollas, C., & Gómez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 14(3), 4885–4911. DOI
Armando, R. (2009). Memproduksi 15 minyak atsiri berkualitas. Jakarta, ID: Penebar Swadaya. Retrieved from website
Asamenew, G., Kim, H. W., Lee, M. K., Lee, S. H., Kim, Y. J., Cha, Y. S., … Kim, J. B. (2019). Characterization of phenolic compounds from normal ginger (Zingiber officinale Rosc.) and black ginger (Kaempferia parviflora Wall.) using UPLC–DAD–QToF–MS. European Food Research and Technology, 245, 653–665. DOI
Bermawie, N., Syahid, S., Ajijah, N., Purwiyanti, S., & Martono, B. (2013). Stabilitas hasil dan mutu enam genotipe harapan jahe putih kecil (Zingiber officinale Rosc. var amarum) pada beberapa agroekologi. Jurnal Penelitian Tanaman Industri, 19(2), 58–65. DOI
Bettaieb, I., Zakhama, N., Aidi Wannes, W., Kchouk, M. E., & Marzouk, B. (2009). Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Scientia Horticulturae, 120(2), 271–275. DOI
Bhuiyan, M. N. I., Begum, J., & Anwar, M. (2013). Essential oils of leaves and rhizomes of Kaempferia galanga Linn. Chittagong University Journal of Biological Sciences, 3(1), 65–76. DOI
Bouwmeester, H., Schuurink, R. C., Bleeker, P. M., & Schiestl, F. (2019). The role of volatiles in plant communication. Plant Journal, 100, 892–907. DOI
BPS. (2019). Statistik tanaman biofarmaka Indonesia 2018. Jakarta, ID: Badan Pusat Statistik. Retrieved from website
BSN. Simplisia kencur (2005). Indonesia: Badan Standardisasi Nasional. Retrieved from website
Buntoro, B. H., Rogomulyo, R., & Trisnowati, S. (2014). Pengaruh takaran pupuk kandang dan intensitas cahaya terhadap pertumbuhan dan hasil temu putih (Curcuma zedoaria L.). Vegetalika, 3(4), 29–39. Retrieved from website
Butnariu, M., & Sarac, I. (2018). Essential oils from plants. Journal of Biotechnology and Biomedical Science, 1(4), 35–43. DOI
Chiu, C. Y., Yeh, K. W., Lin, G., Chiang, M. H., Yang, S. C., Chao, W. J., … Huang, J. L. (2016). Metabolomics reveals dynamic metabolic changes associated with age in early childhood. PLoS ONE, 11(2), e0149823. DOI
Chrysargyris, A., Mikallou, M., Petropoulos, S., & Tzortzakis, N. (2020). Profiling of essential oils components and polyphenols for their antioxidant activity of medicinal and aromatic plants grown in different environmental conditions. Agronomy, 10(5), 727. DOI
Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11, 163. DOI
Croteau, R., Kutchan, T. M., & Lewis, N. G. (2000). Natural products (Secondary metabolites). In B. Buchanan, W. Gruissem, & R. Jones (Eds.), Biochemistry & Molecular Biology of Plants (pp. 1250–1318). American Society of Plant Physiologists. Retrieved from PDF
da Costa, O. B., Del Menezzi, C. H. S., Benedito, L. E. C., Resck, I. S., Vieira, R. F., & Bizzo, H. R. (2014). Essential oil constituents and yields from leaves of Blepharocalyx salicifolius (Kunt) O. Berg and Myracrodruon urundeuva (Allemão) collected during the daytime. International Journal of Forestry Research, 2014, 982576. DOI
da Silva, E. B. P., Soares, M. G., Mariane, B., Vallim, M. A., Pascon, R. C., Sartorelli, P., & Lago, J. H. G. (2013). The Seasonal variation of the chemical composition of essential oils from Porcelia macrocarpa r.e. fries (Annonaceae) and their antimicrobial activity. Molecules, 18(11), 13574–13587. DOI
de Souza Tavares, W., de Sousa Freitas, S., Grazziotti, G. H., Parente, L. M. L., Lião, L. M., & Zanuncio, J. C. (2013). Ar-turmerone from Curcuma longa (Zingiberaceae) rhizomes and effects on Sitophilus zeamais (Coleoptera: Curculionidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). Industrial Crops and Products, 46, 158–164. DOI
de Souza, E. L. (2016). The effects of sublethal doses of essential oils and their constituents on antimicrobial susceptibility and antibiotic resistance among food-related bacteria: A review. Trends in Food Science and Technology, 56, 1–12. DOI
DEPKES RI. (1977). Materia medika Indonesia (1st ed.). Jakarta, ID: Departemen Kesehatan Republik Indonesia. Retrieved from website
DINPERINDAG JATENG. (2014). Kesiapan pasokan bahan baku dalam menunjang industri obat tradisional menghadapi masyarakat ekonomi ASEAN. In E-Paper Industri Logam Jawa Tengah (pp. 33–39). Semarang, ID: Dinas Perindustrian dan Perdagangan Provinsi Jawa Tengah. Retrieved from PDF
Fernández-Sestelo, M., & Carrillo, J. M. (2020). Environmental effects on yield and composition of essential oil in wild populations of spike lavender (Lavandula latifolia Medik.). Agriculture, 10(12), 626. DOI
Gowda, V., Kress, W. J., & Htun, T. (2012). Two new species of gingers (Zingiberaceae) from Myanmar. PhytoKeys, 13, 5–14. DOI
Gupta, P., & De, B. (2017). Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin and gentisic acid levels in leaves of tolerant varieties. Plant Signaling and Behavior, 12(7), e1335845. DOI
Gutbrodt, B., Dorn, S., Unsicker, S. B., & Mody, K. (2012). Species-specific responses of herbivores to within-plant and environmentally mediated between-plant variability in plant chemistry. Chemoecology, 22, 101–111. DOI
Guzman, J. D. (2014). Natural cinnamic acids, synthetic derivatives, and hybrids with antimicrobial activity. Molecules, 19(12), 19292–19349. DOI
Han, J. S., Lee, S., Kim, H. Y., & Lee, C. H. (2015). MS-based metabolite profiling of aboveground and root components of Zingiber mioga and Officinale. Molecules, 20(9), 16170–16185. DOI
Hardy, N. W., & Hall, R. D. (2012). Plant metabolomics: Methods and protocols. New York: Humana Press. DOI
Harit, J., Barapatre, A., Prajapati, M., Aadil, K. R., & Senapati, S. (2013). Antimicrobial activity of rhizome of selected Curcuma variety. International Journal of Life Sciences Biotechnology and Pharma Research, 2(3), 1–7. Retrieved from website
Jan, H. U., Rabbani, M. A., & Shinwari, Z. K. (2012). Estimation of genetic variability in turmeric (Curcuma longa L.) germplasm using agro-morphological traits. Pakistan Journal of Botany, 44, 231–238. Retrieved from website
Jones, O. A. H., Maguire, M. L., Griffin, J. L., Dias, D. A., Spurgeon, D. J., & Svendsen, C. (2013). Metabolomics and its use in ecology. Austral Ecology, 38(6), 713–720. DOI
Jorge, T. F., Rodrigues, J. A., Caldana, C., Schmidt, R., van Dongen, J. T., Thomas-Oates, J., & António, C. (2016). Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. Mass Spectrometry Reviews, 35(5), 620–649. DOI
Karami, A., Khoshbakht, T., Esmaeili, H., & Maggi, F. (2020). Essential oil chemical variability in Oliveria decumbens (Apiaceae) from different regions of Iran and its relationship with environmental factors. Plants, 9(6), 680. DOI
Kavitha, P. R., & Menon, M. V. (2013). Effect of potassium and secondary nutrients on the essential oil and oleoresin contents in kacholam (Kaempferia galanga L.). Journal of Tropical Agriculture, 51(1), 105–110. Retrieved from website
Komala, I., Supandi, Nurhasni, Betha, O. S., Yardi, Mufidah, S., … Sutar. (2017). Microwave-assisted synthesis of p-methoxycinnamamides and p-methoxy-β-nitrostyrenes from ethyl p-methoxycinnamate and screening their anti-inflammatory activity. Natural Product Communications, 12(8), 1265–1268. DOI
Kusano, M., Yang, Z., Okazaki, Y., Nakabayashi, R., Fukushima, A., & Saito, K. (2015). Using metabolomic approaches to explore chemical diversity in rice. Molecular Plant, 8(1), 58–67. DOI
Lakitan, B. (2018). Dasar-dasar fisiologi tumbuhan (14th ed.). Depok, ID: PT. RajaGrafindo Persada. Retrieved from website
Liu, H., Specht, C. D., Zhao, T., & Liao, J. (2020). Morphological anatomy of leaf and rhizome in Zingiber officinale Roscoe, with emphasis on secretory structures. HortScience, 55(2), 204–207. DOI
Mattjik, A. A., & Sumertajaya, M. (2006). Perancangan percobaan dan aplikasi SAS dan minitab (2nd ed.). Bogor, ID: IPB Press. Retrieved from website
Meena, R. K., Jangra, S., Wadhwa, Z., Monika, & Wati, L. (2017). Role of plant volatiles in defense and communication. International Journal of Current Microbiology and Applied Sciences, 6(4), 300–313. DOI
Moghaddam, M., & Mehdizadeh, L. (2017). Chemistry of essential oils and factors influencing their constituents. In Soft Chemistry and Food Fermentation - Handbook of Food Bioengineering (pp. 379–419). Academic Press. DOI
Mu, N., Liu, H.-F., Kuang, Y.-F., Zou, P., & Liao, J.-P. (2015). Developmental processes of rhizome and ultrastructure of secretory cavities in Zingiber officinale Roscoe. Journal of Tropical and Subtropical Botany, 23(2), 151–159. Retrieved from website
Munda, S., Saikia, P., & Lal, M. (2018). Chemical composition and biological activity of essential oil of Kaempferia galanga: A review. Journal of Essential Oil Research, 30(5), 303–308. DOI
Ncube, B., Finnie, J. F., & Van Staden, J. (2012). Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. South African Journal of Botany, 82, 11–20. DOI
Nugroho, L. H. (2018). Struktur dan produk jaringan sekretori tumbuhan (2nd ed.). Yogyakarta, ID: Gadjah Mada University Press. Retrieved from website
Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 69(19), 3225–3243. DOI
Olawode, E. O., Tandlich, R., & Cambray, G. (2018). 1H-NMR profiling and chemometric analysis of selected honey from South Africa, Zambia, and Slovakia. Molecules, 23(3), 578. DOI
Pavarini, D. P., Pavarini, S. P., Niehues, M., & Lopes, N. P. (2012). Exogenous influences on plant secondary metabolite levels. Animal Feed Science and Technology, 176(1–4), 5–16. DOI
Preetha, T. S., Hemanthakumar, A. S., & Krishnan, P. N. (2016). A comprehensive review of Kaempferia galanga L. (Zingiberaceae): A high sought medicinal plant in tropical Asia. Journal of Medicinal Plants Studies, 4(3), 270–276. Retrieved from PDF
Pujiasmanto, B. (2009). Strategi pengembangan budidaya tumbuhan obat dalam menunjang pertanian berkelanjutan. Semarang, ID: Universitas Sebelas Maret Press. Retrieved from website
Purwadi, E. (2011). Pengujian ketahanan benih terhadap cekaman lingkungan. Retrieved from website
Purwoko, T. (2007). Fisiologi mikroba. Jakarta, ID: Bumi Aksara. Retrieved from website
Putri, E. I. K., Rifin, A., Novindra, Daryanto, H. K., Hastuti, & Istiqomah, A. (2014). Tangible value biodiversitas herbal dan meningkatkan daya saing produk herbal Indonesia dalam menghadapi masyarakat ekonomi ASEAN 2015. Jurnal Ilmu Pertanian Indonesia, 19(2), 118–124. Retrieved from website
Rahimmalek, M., Tabatabaei, B. E. S., Etemadi, N., Goli, S. A. H., Arzani, A., & Zeinali, H. (2009). Essential oil variation among and within six Achillea species transferred from different ecological regions in Iran to the field conditions. Industrial Crops and Products, 29(2–3), 348–355. DOI
Raina, A. P., Abraham, Z., & Sivaraj, N. (2015). Diversity analysis of Kaempferia galanga L. germplasm from South India using DIVA-GIS approach. Industrial Crops and Products, 69, 433–439. DOI
Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behavior, 6(11), 1720–1731. DOI
Rehman, R., Hanif, M. A., Mushtaq, Z., Mochona, B., & Qi, X. (2016). Biosynthetic factories of essential oils: The aromatic plants. Natural Products Chemistry & Research, 4, 4. DOI
Rostiana, O., & Effendi, D. S. (2007). Teknologi unggulan kencur: Perbenihan dan budidaya pendukung varietas unggul. Bogor, ID: Pusat Penelitian dan Pengembangan Perkebunan Badan Penelitian dan Pengembangan Pertanian. Retrieved from website
Rostiana, O., & Subaryanti. (2010). Yield and quality of five galangas (Kaempferia galanga L.) promising lines at different growth environments. Jurnal Bahan Alam Indonesia, 7(2), 152. Retrieved from website
Rostiana, O., Haryudin, W., & Rosita, S. (2006). Stabilitas hasil lima nomor harapan kencur. Jurnal Penelitian Tanaman Industri, 12(4), 140–145. DOI
Rostiana, O., Rosita, S., & Rahardjo, M. (2009). Standar prosedur operasional budidaya kencur. Circular, 16, 13–24. Retrieved from PDF
Salim, Z., & Munadi, E. (2017). Info komoditi tanaman obat. Jakarta, ID: Badan Pengkajian dan Pengembangan Perdagangan Kementerian Perdagangan Republik Indonesia. Retrieved from PDF
Salvador, V. H., Lima, R. B., dos Santos, W. D., Soares, A. R., Böhm, P. A. F., Marchiosi, R., … Ferrarese-Filho, O. (2013). Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS ONE, 8(7), e69105. DOI
Sampaio, B. L., Edrada-Ebel, R., & Da Costa, F. B. (2016). Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Scientific Reports, 6, 29265. DOI
Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of essential oils in bioactive edible coatings: A review. Food Engineering Reviews, 3(1), 1–16. DOI
Sangwan, R. S., Tiwari, P., Mishra, S. K., Yadav, R. K., Tripathi, S., Kushwaha, A. K., & Sangwan, R. S. (2015). Plant metabolomics: An overview of technology platforms for applications in metabolism. In D. Barh, M. Khan, & E. Davies (Eds.), PlantOmics: The Omics of Plant Science (pp. 257–298). New Delhi, IN: Springer. DOI
Septaningsih, D. A., Darusman, L. K., Afendi, F. M., & Heryanto, R. (2018). Liquid chromatography-mass spectrometry (LC-MS) fingerprint combined with chemometrics for identification of metabolites content and biological activities of Curcuma aeruginosa. Indonesian Journal of Chemistry, 18(1), 43–52. DOI
Sirousmehr, A., Arbabi, J., & Asgharipour, M. R. (2014). Effect of drought stress levels and organic manures on yield, essential oil content, and some morphological characteristics of sweet basil (Ocimum basilicum). Advances in Environmental Biology, 8(4), 880–885. Retrieved from website
Srivastava, N., Ranjana, Singh, S., Gupta, A. C., Shanker, K., Bawankule, D. U., & Luqman, S. (2019). Aromatic ginger (Kaempferia galanga L.) extracts with ameliorative and protective potential as a functional food, beyond its flavor and nutritional benefits. Toxicology Reports, 6, 521–528. DOI
Subaryanti. (2005). Karakteristik komponen hasil dan mutu kencur (Kaempferia galanga L.) pada lingkungan tumbuh yang berbeda. IPB University. Retrieved from website
Suryawati, S., & Murniyanto, E. (2011). Hubungan sifat tanah Madura dengan kandungan minyak atsiri dan tingkat kelarutannya pada jahe (Zingiber offocinale L.). Agrovigor: Jurnal Agroekoteknologi, 4(2), 99–104. Retrieved from website
Syahid, S. F., Syukur, C., Kristina, N. N., & Pitono, J. (2012). Adaptasi delapan nomor harapan kunyit (Curcuma domestica Vahl.) toleran naungan. Buletin Penelitian Tanaman Rempah Dan Obat, 23(2), 115–124. Retrieved from website
Taiz, L., & Zeiger, E. (2010). Plant physiology (5th ed.). Sunderland, Massachusetts: SInauer Associates Inc. Publishers. Retrieved from PDF
Tisserand, R., & Young, R. (2014). Essential oil safety: A guide for health care professionals (2nd ed.). Elsevier. DOI
Tripathi, M., Chawla, P., Upadhyay, R., & Trivedi, S. (2013). Essential oils from family Zingiberaceae for antimicrobial activity - a review. International Journal of Pharma and Bio Sciences, 4(4), 149–162. Retrieved from website
Umar, M. I., Asmawi, M. Z., Sadikun, A., Atangwho, I. J., Yam, M. F., Altaf, R., & Ahmed, A. (2012). Bioactivity-guided isolation of ethyl-p-methoxycinnamate, an anti-inflammatory constituent, from Kaempferia galanga L. extracts. Molecules, 17(7), 8720–8734. DOI
Unal, B. T., Guvensen, A., Dereboylu, A. E., & Ozturk, M. (2013). Variations in the proline and total protein contents in Origanum sipyleum L. from different altitudes of Spil mountain, Turkey. Pakistan Journal of Botany, 45(S1), 571–576. Retrieved from PDF
Velayudhan, K. C., Dikshit, N., & Abdul Nizar, M. (2012). Ethnobotany of turmeric (Curcuma longa L.). Indian Journal of Traditional Knowledge, 11(4), 607–614. Retrieved from PDF
Victório, C. P., Kuster, R. M., & Lage, C. L. S. (2011). Leaf and root volatiles produced by tissue cultures of Alpinia zerumbet (PERS.) Burtt & Smith under the influence of different plant growth regulators. Quimica Nova, 34(3), 430–433. DOI
Vilela, E. C., Duarte, A. R., Naves, R. V., Santos, S. C., Seraphin, J. C., & Ferri, P. H. (2013). Spatial chemometric analyses of essential oil variability in Eugenia dysenterica. Journal of the Brazilian Chemical Society, 24(5), 873–879. DOI
Weckwerth, W., & Kahl, G. (2013). The handbook of plant metabolomics. Wiley‐VCH. DOI
Widiyanto, A., & Siarudin, M. (2013). Karakteristik daun dan rendemen minyak atsiri lima jenis tumbuhan kayu putih. Jurnal Penelitian Hasil Hutan, 31(4), 235–241. DOI
Widodo, Patterson, J. H., Newbigin, E., Tester, M., Bacic, A., & Roessner, U. (2009). Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of Experimental Botany, 60(14), 4089–4103. DOI
Widyastuti, Y., & Sugiarso, S. (2003). Pengaruh beberapa tingkat dosis pupuk organik dan tiga jenis tanah pada pertumbuhan dan kandungan minyak atsisi ketumbar (Coriandrum sativum L.). Jurnal Bahan Alam Indonesia, 2(3), 105. Retrieved from website
Xia, J., & Wishart, D. S. (2016). Using metaboanalyst 3.0 for comprehensive metabolomics data analysis. Current Protocols in Bioinformatics, 55(1), 14.10.1-14.10.91. DOI
Yang, Y., Tian, S., Wang, F., Li, Z., Liu, L., Yang, X., … Li, Y. (2018). Chemical composition and biological activity of essential oil of Kaempferia galanga: A review. International Journal of Agriculture and Biology, 20(2), 457–462. Retrieved from website
Yaqoob, U., & Nawchoo, I. A. (2017). Impact of habitat variability and altitude on growth dynamics and reproductive allocation in Ferula jaeschkeana Vatke. Journal of King Saud University - Science, 29(1), 19–27. DOI
Yudthavorasit, S., Wongravee, K., & Leepipatpiboon, N. (2014). Characteristic fingerprint based on gingerol derivative analysis for discrimination of ginger (Zingiber officinale) according to geographical origin using HPLC-DAD combined with chemometrics. Food Chemistry, 158, 101–111. DOI
Yulipriyanto, H. (2010). Biologi tanah dan strategi pengelolaannya. Yogyakarta, ID: Graha Ilmu. Retrieved from website
DOI: http://doi.org/10.17503/agrivita.v43i2.2631
Copyright (c) 2021 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.