Essential Oil Components, Metabolite Profiles, and Idioblast Cell Densities in Galangal (Kaempferia galanga L.) at Different Agroecology

Subaryanti Subaryanti, Yohana Caecilia Sulistyaningsih, Dyah Iswantini, Triadiati Triadiati


Galangal is widely cultivated for the multifunctional plant. This study analyzed the essential oil chemical components, metabolite profiles, and idioblast cell densities in seven galangal accession grown at two different altitudes (locations A and B). The galangal accessions included: Purbalingga, Cilacap, Purworejo, Karanganyar, Pacitan, Madiun, and Galesia 2 which was used as the control. The results showed that the highest essential oil content was obtained from MAD (3.22%) at location A. The highest levels of ethyl-p-methoxycinnamate (EPMC) were obtained from PBG (74.8%) at location B and PCT (71.6%) at location A. The metabolite profiles of the galangal rhizomes were divided into two clusters based on the metabolite content. The first cluster had one accession: PCT from location A with genkwanin as the metabolite marker. The second cluster consisted of CLP from location A and PBG, MAD, and GAL2 from location B. The highest density of idioblast cells was found in PCT (90.5 cells/mm2) at location A and PBG accessions (77.1 cells/mm2) at location B. The PBG and PCT accessions can be recommended as a candidate of superior varieties based on their high EPMC content.


Agroecology; EPMC; Galangal; Idioblast cell; Metabolite profiles

Full Text:



Anggraito, Y. U., Susanti, R., Iswari, R. S., Yuniastuti, A., Lisdiana, Nugrahangisih, W., … Bintari, S. H. (2018). Metabolit sekunder dari tanaman: Aplikasi dan produksi. Semarang, ID: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Semarang. Retrieved from

Aragaw, M., Alamerew, S., Michael, G. H., & Tesfaye, A. (2011). Variability of ginger (Zingiber officinale Rosc.) accessions for morphological and some quality traits in Ethiopia. International Journal of Agricultural Research, 6(6), 444–457.

Arbona, V., Manzi, M., de Ollas, C., & Gómez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 14(3), 4885–4911.

Armando, R. (2009). Memproduksi 15 minyak atsiri berkualitas. Jakarta, ID: Penebar Swadaya. Retrieved from

Asamenew, G., Kim, H. W., Lee, M. K., Lee, S. H., Kim, Y. J., Cha, Y. S., … Kim, J. B. (2019). Characterization of phenolic compounds from normal ginger (Zingiber officinale Rosc.) and black ginger (Kaempferia parviflora Wall.) using UPLC–DAD–QToF–MS. European Food Research and Technology, 245, 653–665.

Bermawie, N., Syahid, S., Ajijah, N., Purwiyanti, S., & Martono, B. (2013). Stabilitas hasil dan mutu enam genotipe harapan jahe putih kecil (Zingiber officinale Rosc. var amarum) pada beberapa agroekologi. Jurnal Penelitian Tanaman Industri, 19(2), 58–65.

Bettaieb, I., Zakhama, N., Aidi Wannes, W., Kchouk, M. E., & Marzouk, B. (2009). Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Scientia Horticulturae, 120(2), 271–275.

Bhuiyan, M. N. I., Begum, J., & Anwar, M. (2013). Essential oils of leaves and rhizomes of Kaempferia galanga Linn. Chittagong University Journal of Biological Sciences, 3(1), 65–76.

Bouwmeester, H., Schuurink, R. C., Bleeker, P. M., & Schiestl, F. (2019). The role of volatiles in plant communication. Plant Journal, 100, 892–907.

BPS. (2019). Statistik tanaman biofarmaka Indonesia 2018. Jakarta, ID: Badan Pusat Statistik. Retrieved from

BSN. Simplisia kencur (2005). Indonesia: Badan Standardisasi Nasional. Retrieved from

Buntoro, B. H., Rogomulyo, R., & Trisnowati, S. (2014). Pengaruh takaran pupuk kandang dan intensitas cahaya terhadap pertumbuhan dan hasil temu putih (Curcuma zedoaria L.). Vegetalika, 3(4), 29–39. Retrieved from

Butnariu, M., & Sarac, I. (2018). Essential oils from plants. Journal of Biotechnology and Biomedical Science, 1(4), 35–43.

Chiu, C. Y., Yeh, K. W., Lin, G., Chiang, M. H., Yang, S. C., Chao, W. J., … Huang, J. L. (2016). Metabolomics reveals dynamic metabolic changes associated with age in early childhood. PLoS ONE, 11(2), e0149823.

Chrysargyris, A., Mikallou, M., Petropoulos, S., & Tzortzakis, N. (2020). Profiling of essential oils components and polyphenols for their antioxidant activity of medicinal and aromatic plants grown in different environmental conditions. Agronomy, 10(5), 727.

Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11, 163.

Croteau, R., Kutchan, T. M., & Lewis, N. G. (2000). Natural products (Secondary metabolites). In B. Buchanan, W. Gruissem, & R. Jones (Eds.), Biochemistry & Molecular Biology of Plants (pp. 1250–1318). American Society of Plant Physiologists. Retrieved from

da Costa, O. B., Del Menezzi, C. H. S., Benedito, L. E. C., Resck, I. S., Vieira, R. F., & Bizzo, H. R. (2014). Essential oil constituents and yields from leaves of Blepharocalyx salicifolius (Kunt) O. Berg and Myracrodruon urundeuva (Allemão) collected during the daytime. International Journal of Forestry Research, 2014, 982576.

da Silva, E. B. P., Soares, M. G., Mariane, B., Vallim, M. A., Pascon, R. C., Sartorelli, P., & Lago, J. H. G. (2013). The Seasonal variation of the chemical composition of essential oils from Porcelia macrocarpa r.e. fries (Annonaceae) and their antimicrobial activity. Molecules, 18(11), 13574–13587.

de Souza Tavares, W., de Sousa Freitas, S., Grazziotti, G. H., Parente, L. M. L., Lião, L. M., & Zanuncio, J. C. (2013). Ar-turmerone from Curcuma longa (Zingiberaceae) rhizomes and effects on Sitophilus zeamais (Coleoptera: Curculionidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). Industrial Crops and Products, 46, 158–164.

de Souza, E. L. (2016). The effects of sublethal doses of essential oils and their constituents on antimicrobial susceptibility and antibiotic resistance among food-related bacteria: A review. Trends in Food Science and Technology, 56, 1–12.

DEPKES RI. (1977). Materia medika Indonesia (1st ed.). Jakarta, ID: Departemen Kesehatan Republik Indonesia. Retrieved from

DINPERINDAG JATENG. (2014). Kesiapan pasokan bahan baku dalam menunjang industri obat tradisional menghadapi masyarakat ekonomi ASEAN. In E-Paper Industri Logam Jawa Tengah (pp. 33–39). Semarang, ID: Dinas Perindustrian dan Perdagangan Provinsi Jawa Tengah. Retrieved from Logam Jawa Tengah.pdf

Fernández-Sestelo, M., & Carrillo, J. M. (2020). Environmental effects on yield and composition of essential oil in wild populations of spike lavender (Lavandula latifolia Medik.). Agriculture, 10(12), 626.

Gowda, V., Kress, W. J., & Htun, T. (2012). Two new species of gingers (Zingiberaceae) from Myanmar. PhytoKeys, 13, 5–14.

Gupta, P., & De, B. (2017). Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin and gentisic acid levels in leaves of tolerant varieties. Plant Signaling and Behavior, 12(7), e1335845.

Gutbrodt, B., Dorn, S., Unsicker, S. B., & Mody, K. (2012). Species-specific responses of herbivores to within-plant and environmentally mediated between-plant variability in plant chemistry. Chemoecology, 22, 101–111.

Guzman, J. D. (2014). Natural cinnamic acids, synthetic derivatives, and hybrids with antimicrobial activity. Molecules, 19(12), 19292–19349.

Han, J. S., Lee, S., Kim, H. Y., & Lee, C. H. (2015). MS-based metabolite profiling of aboveground and root components of Zingiber mioga and Officinale. Molecules, 20(9), 16170–16185.

Hardy, N. W., & Hall, R. D. (2012). Plant metabolomics: Methods and protocols. New York: Humana Press.

Harit, J., Barapatre, A., Prajapati, M., Aadil, K. R., & Senapati, S. (2013). Antimicrobial activity of rhizome of selected Curcuma variety. International Journal of Life Sciences Biotechnology and Pharma Research, 2(3), 1–7. Retrieved from

Jan, H. U., Rabbani, M. A., & Shinwari, Z. K. (2012). Estimation of genetic variability in turmeric (Curcuma longa L.) germplasm using agro-morphological traits. Pakistan Journal of Botany, 44, 231–238. Retrieved from

Jones, O. A. H., Maguire, M. L., Griffin, J. L., Dias, D. A., Spurgeon, D. J., & Svendsen, C. (2013). Metabolomics and its use in ecology. Austral Ecology, 38(6), 713–720.

Jorge, T. F., Rodrigues, J. A., Caldana, C., Schmidt, R., van Dongen, J. T., Thomas-Oates, J., & António, C. (2016). Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. Mass Spectrometry Reviews, 35(5), 620–649.

Karami, A., Khoshbakht, T., Esmaeili, H., & Maggi, F. (2020). Essential oil chemical variability in Oliveria decumbens (Apiaceae) from different regions of Iran and its relationship with environmental factors. Plants, 9(6), 680.

Kavitha, P. R., & Menon, M. V. (2013). Effect of potassium and secondary nutrients on the essential oil and oleoresin contents in kacholam (Kaempferia galanga L.). Journal of Tropical Agriculture, 51(1), 105–110. Retrieved from

Komala, I., Supandi, Nurhasni, Betha, O. S., Yardi, Mufidah, S., … Sutar. (2017). Microwave-assisted synthesis of p-methoxycinnamamides and p-methoxy-β-nitrostyrenes from ethyl p-methoxycinnamate and screening their anti-inflammatory activity. Natural Product Communications, 12(8), 1265–1268.

Kusano, M., Yang, Z., Okazaki, Y., Nakabayashi, R., Fukushima, A., & Saito, K. (2015). Using metabolomic approaches to explore chemical diversity in rice. Molecular Plant, 8(1), 58–67.

Lakitan, B. (2018). Dasar-dasar fisiologi tumbuhan (14th ed.). Depok, ID: PT. RajaGrafindo Persada. Retrieved from

Liu, H., Specht, C. D., Zhao, T., & Liao, J. (2020). Morphological anatomy of leaf and rhizome in Zingiber officinale Roscoe, with emphasis on secretory structures. HortScience, 55(2), 204–207.

Mattjik, A. A., & Sumertajaya, M. (2006). Perancangan percobaan dan aplikasi SAS dan minitab (2nd ed.). Bogor, ID: IPB Press. Retrieved from

Meena, R. K., Jangra, S., Wadhwa, Z., Monika, & Wati, L. (2017). Role of plant volatiles in defense and communication. International Journal of Current Microbiology and Applied Sciences, 6(4), 300–313.

Moghaddam, M., & Mehdizadeh, L. (2017). Chemistry of essential oils and factors influencing their constituents. In Soft Chemistry and Food Fermentation - Handbook of Food Bioengineering (pp. 379–419). Academic Press.

Mu, N., Liu, H.-F., Kuang, Y.-F., Zou, P., & Liao, J.-P. (2015). Developmental processes of rhizome and ultrastructure of secretory cavities in Zingiber officinale Roscoe. Journal of Tropical and Subtropical Botany, 23(2), 151–159. Retrieved from

Munda, S., Saikia, P., & Lal, M. (2018). Chemical composition and biological activity of essential oil of Kaempferia galanga: A review. Journal of Essential Oil Research, 30(5), 303–308.

Ncube, B., Finnie, J. F., & Van Staden, J. (2012). Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. South African Journal of Botany, 82, 11–20.

Nugroho, L. H. (2018). Struktur dan produk jaringan sekretori tumbuhan (2nd ed.). Yogyakarta, ID: Gadjah Mada University Press. Retrieved from

Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 69(19), 3225–3243.

Olawode, E. O., Tandlich, R., & Cambray, G. (2018). 1H-NMR profiling and chemometric analysis of selected honey from South Africa, Zambia, and Slovakia. Molecules, 23(3), 578.

Pavarini, D. P., Pavarini, S. P., Niehues, M., & Lopes, N. P. (2012). Exogenous influences on plant secondary metabolite levels. Animal Feed Science and Technology, 176(1–4), 5–16.

Preetha, T. S., Hemanthakumar, A. S., & Krishnan, P. N. (2016). A comprehensive review of Kaempferia galanga L. (Zingiberaceae): A high sought medicinal plant in tropical Asia. Journal of Medicinal Plants Studies, 4(3), 270–276. Retrieved from

Pujiasmanto, B. (2009). Strategi pengembangan budidaya tumbuhan obat dalam menunjang pertanian berkelanjutan. Semarang, ID: Universitas Sebelas Maret Press. Retrieved from

Purwadi, E. (2011). Pengujian ketahanan benih terhadap cekaman lingkungan. Retrieved from

Purwoko, T. (2007). Fisiologi mikroba. Jakarta, ID: Bumi Aksara. Retrieved from⊂=BookDetail&act=view&typ=htmlext&buku_id=646836&obyek_id=1

Putri, E. I. K., Rifin, A., Novindra, Daryanto, H. K., Hastuti, & Istiqomah, A. (2014). Tangible value biodiversitas herbal dan meningkatkan daya saing produk herbal Indonesia dalam menghadapi masyarakat ekonomi ASEAN 2015. Jurnal Ilmu Pertanian Indonesia, 19(2), 118–124. Retrieved from

Rahimmalek, M., Tabatabaei, B. E. S., Etemadi, N., Goli, S. A. H., Arzani, A., & Zeinali, H. (2009). Essential oil variation among and within six Achillea species transferred from different ecological regions in Iran to the field conditions. Industrial Crops and Products, 29(2–3), 348–355.

Raina, A. P., Abraham, Z., & Sivaraj, N. (2015). Diversity analysis of Kaempferia galanga L. germplasm from South India using DIVA-GIS approach. Industrial Crops and Products, 69, 433–439.

Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behavior, 6(11), 1720–1731.

Rehman, R., Hanif, M. A., Mushtaq, Z., Mochona, B., & Qi, X. (2016). Biosynthetic factories of essential oils: The aromatic plants. Natural Products Chemistry & Research, 4, 4.

Rostiana, O., & Effendi, D. S. (2007). Teknologi unggulan kencur: Perbenihan dan budidaya pendukung varietas unggul. Bogor, ID: Pusat Penelitian dan Pengembangan Perkebunan Badan Penelitian dan Pengembangan Pertanian. Retrieved from

Rostiana, O., & Subaryanti. (2010). Yield and quality of five galangas (Kaempferia galanga L.) promising lines at different growth environments. Jurnal Bahan Alam Indonesia, 7(2), 152. Retrieved from

Rostiana, O., Haryudin, W., & Rosita, S. (2006). Stabilitas hasil lima nomor harapan kencur. Jurnal Penelitian Tanaman Industri, 12(4), 140–145.

Rostiana, O., Rosita, S., & Rahardjo, M. (2009). Standar prosedur operasional budidaya kencur. Circular, 16, 13–24. Retrieved from

Salim, Z., & Munadi, E. (2017). Info komoditi tanaman obat. Jakarta, ID: Badan Pengkajian dan Pengembangan Perdagangan Kementerian Perdagangan Republik Indonesia. Retrieved from

Salvador, V. H., Lima, R. B., dos Santos, W. D., Soares, A. R., Böhm, P. A. F., Marchiosi, R., … Ferrarese-Filho, O. (2013). Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS ONE, 8(7), e69105.

Sampaio, B. L., Edrada-Ebel, R., & Da Costa, F. B. (2016). Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Scientific Reports, 6, 29265.

Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of essential oils in bioactive edible coatings: A review. Food Engineering Reviews, 3(1), 1–16.

Sangwan, R. S., Tiwari, P., Mishra, S. K., Yadav, R. K., Tripathi, S., Kushwaha, A. K., & Sangwan, R. S. (2015). Plant metabolomics: An overview of technology platforms for applications in metabolism. In D. Barh, M. Khan, & E. Davies (Eds.), PlantOmics: The Omics of Plant Science (pp. 257–298). New Delhi, IN: Springer.

Septaningsih, D. A., Darusman, L. K., Afendi, F. M., & Heryanto, R. (2018). Liquid chromatography-mass spectrometry (LC-MS) fingerprint combined with chemometrics for identification of metabolites content and biological activities of Curcuma aeruginosa. Indonesian Journal of Chemistry, 18(1), 43–52.

Sirousmehr, A., Arbabi, J., & Asgharipour, M. R. (2014). Effect of drought stress levels and organic manures on yield, essential oil content, and some morphological characteristics of sweet basil (Ocimum basilicum). Advances in Environmental Biology, 8(4), 880–885. Retrieved from

Srivastava, N., Ranjana, Singh, S., Gupta, A. C., Shanker, K., Bawankule, D. U., & Luqman, S. (2019). Aromatic ginger (Kaempferia galanga L.) extracts with ameliorative and protective potential as a functional food, beyond its flavor and nutritional benefits. Toxicology Reports, 6, 521–528.

Subaryanti. (2005). Karakteristik komponen hasil dan mutu kencur (Kaempferia galanga L.) pada lingkungan tumbuh yang berbeda. IPB University. Retrieved from

Suryawati, S., & Murniyanto, E. (2011). Hubungan sifat tanah Madura dengan kandungan minyak atsiri dan tingkat kelarutannya pada jahe (Zingiber offocinale L.). Agrovigor: Jurnal Agroekoteknologi, 4(2), 99–104. Retrieved from

Syahid, S. F., Syukur, C., Kristina, N. N., & Pitono, J. (2012). Adaptasi delapan nomor harapan kunyit (Curcuma domestica Vahl.) toleran naungan. Buletin Penelitian Tanaman Rempah Dan Obat, 23(2), 115–124. Retrieved from

Taiz, L., & Zeiger, E. (2010). Plant physiology (5th ed.). Sunderland, Massachusetts: SInauer Associates Inc. Publishers. Retrieved from

Tisserand, R., & Young, R. (2014). Essential oil safety: A guide for health care professionals (2nd ed.). Elsevier.

Tripathi, M., Chawla, P., Upadhyay, R., & Trivedi, S. (2013). Essential oils from family Zingiberaceae for antimicrobial activity - a review. International Journal of Pharma and Bio Sciences, 4(4), 149–162. Retrieved from

Umar, M. I., Asmawi, M. Z., Sadikun, A., Atangwho, I. J., Yam, M. F., Altaf, R., & Ahmed, A. (2012). Bioactivity-guided isolation of ethyl-p-methoxycinnamate, an anti-inflammatory constituent, from Kaempferia galanga L. extracts. Molecules, 17(7), 8720–8734.

Unal, B. T., Guvensen, A., Dereboylu, A. E., & Ozturk, M. (2013). Variations in the proline and total protein contents in Origanum sipyleum L. from different altitudes of Spil mountain, Turkey. Pakistan Journal of Botany, 45(S1), 571–576. Retrieved from

Velayudhan, K. C., Dikshit, N., & Abdul Nizar, M. (2012). Ethnobotany of turmeric (Curcuma longa L.). Indian Journal of Traditional Knowledge, 11(4), 607–614. Retrieved from 11%284%29 607-614.pdf

Victório, C. P., Kuster, R. M., & Lage, C. L. S. (2011). Leaf and root volatiles produced by tissue cultures of Alpinia zerumbet (PERS.) Burtt & Smith under the influence of different plant growth regulators. Quimica Nova, 34(3), 430–433.

Vilela, E. C., Duarte, A. R., Naves, R. V., Santos, S. C., Seraphin, J. C., & Ferri, P. H. (2013). Spatial chemometric analyses of essential oil variability in Eugenia dysenterica. Journal of the Brazilian Chemical Society, 24(5), 873–879.

Weckwerth, W., & Kahl, G. (2013). The handbook of plant metabolomics. Wiley‐VCH.

Widiyanto, A., & Siarudin, M. (2013). Karakteristik daun dan rendemen minyak atsiri lima jenis tumbuhan kayu putih. Jurnal Penelitian Hasil Hutan, 31(4), 235–241.

Widodo, Patterson, J. H., Newbigin, E., Tester, M., Bacic, A., & Roessner, U. (2009). Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of Experimental Botany, 60(14), 4089–4103.

Widyastuti, Y., & Sugiarso, S. (2003). Pengaruh beberapa tingkat dosis pupuk organik dan tiga jenis tanah pada pertumbuhan dan kandungan minyak atsisi ketumbar (Coriandrum sativum L.). Jurnal Bahan Alam Indonesia, 2(3), 105. Retrieved from

Xia, J., & Wishart, D. S. (2016). Using metaboanalyst 3.0 for comprehensive metabolomics data analysis. Current Protocols in Bioinformatics, 55(1), 14.10.1-14.10.91.

Yang, Y., Tian, S., Wang, F., Li, Z., Liu, L., Yang, X., … Li, Y. (2018). Chemical composition and biological activity of essential oil of Kaempferia galanga: A review. International Journal of Agriculture and Biology, 20(2), 457–462. Retrieved from

Yaqoob, U., & Nawchoo, I. A. (2017). Impact of habitat variability and altitude on growth dynamics and reproductive allocation in Ferula jaeschkeana Vatke. Journal of King Saud University - Science, 29(1), 19–27.

Yudthavorasit, S., Wongravee, K., & Leepipatpiboon, N. (2014). Characteristic fingerprint based on gingerol derivative analysis for discrimination of ginger (Zingiber officinale) according to geographical origin using HPLC-DAD combined with chemometrics. Food Chemistry, 158, 101–111.

Yulipriyanto, H. (2010). Biologi tanah dan strategi pengelolaannya. Yogyakarta, ID: Graha Ilmu. Retrieved from


Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.