Autogation: An Alternate Wetting and Drying-Based Automatic Irrigation and Paddy Water Level Control System through Internet of Things

Lean Karlo S. Tolentino, Patrick Carlos Bacaltos, Rica Mikaela V. Cruz, Neal Jhon S. Dela Cruz, Leah Ruth S. Medina, John Vincent Panergalin, Maria Victoria C. Padilla, Jessica S. Velasco


This study aims to create an automated watering system that can adapt with network-based irrigation monitoring and a safe alternate wetting and drying or AWD. A secure AWD irrigation method is one in which the rice paddy is alternately subsided and immersed with a critical level of 100mm below the ground and a maximum irrigation level of 150 mm above the ground. The designed methodology automates irrigation by considering the needed water level in the field and its present level. It determines and controls the watering schedule based on the data collected by the sensors and then acts on it. It regulates the irrigation delivery gate to close or open the counterweight-designed water gate valve following the smart timetable that it has established. This approach conserved around 20% of the water used in a two-hectare area with four weirs compared to the traditional irrigation method in three weeks.


Alternate wetting and drying; Internet of Things; Irrigation; Rice paddy; Soil water content

Full Text:



Batarseh, M. G., & Za’ter, M. E. (2018). Hybrid maximum power point tracking techniques: A comparative survey, suggested classification and uninvestigated combinations. Solar Energy, 169, 535-555.

Bitella, G., Rossi, R., Bochicchio, R., Perniola, M., & Amato, M. (2014). A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters. Sensors, 14(10), 19639-19659.

Bouman, B. A. M., Lampayan, R. M., & Tuong, T. P. (2007). Water management in irrigated rice: Coping with water scarcity. Los Banos, Philippines: International Rice Research Institute. Retrieved from

Chou, M. L., Jean, J. S., Sun, G. X., Yang, C. M., Hseu, Z. Y., Kuo, S. F., … & Yang, Y. J. (2016). Irrigation practices on rice crop production in arsenic-rich paddy soil. Crop Science, 56(1), 422-431.

Chung, W. Y., Caya, M. V. C., & Chen, C. L. (2013). Wireless sensor based monitoring and content management system for agricultural application. In Position Papers of the 2013 Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information System, 1, 75-78. Retrieved from

Coates, R. W., Delwiche, M. J., & Brown, P. H. (2005). Precision irrigation and fertilization in orchards. In 2005 ASAE Annual International Meeting (Paper number 052214). St. Joseph, Michigan: American Society of Agricultural and Biological Engineers.

Difallah, W., Benahmed, K., Draoui, B., & Bounaama, F. (2017). Implementing wireless sensor networks for smart irrigation. Taiwan Water Conservancy, 65(3), 44-54. Retrieved from

Doraiswamy, P. C., Hatfield, J. L., Jackson, T. J., Akhmedov, B., Prueger, J., & Stern, A. (2004). Crop condition and yield simulations using Landsat and MODIS. Remote Sensing of Environment, 92(4), 548-559.

Gratela, R. O., Martes, J. A. S., Pagatpatan, G. I., Pagkaliwangan, J. P., Torcuato, D. K. A., Amado, T. M., ... & Valenzuela, I. C. (2019). Neuro-fuzzy based MPPT for solar PV panel hybrid cooling system. In 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM) (pp. 1-6). Laoag, Philippines: IEEE.

Gutierrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gandara, M. A. (2014). Automated irrigation system using a wireless sensor network and GPRS module. IEEE Transactions on Instrumentation and Measurement 63(1), 166-176.

Jaichandran, R., Rajaprakash, S., Karthik, K., & Somasundaram, K. (2017). Prototype for effective utilization of available well water resource to irrigate multiple agriculture fields effectively. International Journal of Applied Engineering Research, 12(19), 8487-8491. Retrieved from

Labiano, B. S. (2012). Agricultural water management systems in the Philippines: Current status and policy directions. Extension Bulletin - Food and Fertilizer Technology Center, 651, 1-9. Retrieved from

Lampayan, R. M., Rejesus, R. M., Singleton, G. R., & Bouman, B. A. (2015). Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research, 170, 95-108.

Liu, L.-W., Ismail, M. H., Wang, Y.-M., & Lin, W.-S. (2021). Internet of things based smart irrigation control system for paddy field. AGRIVITA Journal of Agricultural Science, 43(2), 378-389.

Madrigal, G. A. M., Cuevas, K. G., Hora, V., Jimenez, K. M., Manato, J. N., Porlaje, M. J., & Fortaleza, B. (2019). Fuzzy logic-based maximum power point tracking solar battery charge controller with backup stand-by AC generator. Indonesian Journal of Electrical Engineering and Computer Science, 16(1), 136-146.

Manzano, V. J. P., Mizoguchi, M., Mitsuishi, S., & Ito, T. (2011). IT field monitoring in a Japanese system of rice intensification (J-SRI). Paddy and Water Environment, 9(2), 249-255.

Merin, J. V., De Guzman, C. G., Fabrigar, S. M. F., Gloria, G. S., Viaña, J. R. M., Mendoza, G. J. M., & Hollman, G. B. (2018). Hybrid MPPT Solar-Wind Electric Vehicle With Automatic Battery Switching. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1-6). Baguio City, Philippines: IEEE.

Richards, M., & Sander, B. O. (2014). Alternate wetting and drying in irrigated rice. Climate-Smart Agriculture Practice Brief. Copenhagen, DK: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Retrieved from

Seckler, D. W. (1996). The new era of water resources management: from” dry” to” wet” water savings. IIMI Research Report 1. Colombo, Sri Lanka: International Irrigation Management Institute (IIMI).

Tolentino, L. K. S., Cruz, F. R. G., Garcia, R. G., & Chung, W. Y. (2015). Maximum power point tracking controller IC based on ripple correlation control algorithm. In 2015 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1-6). Cebu, Philippines: IEEE.

Tolentino, L. K. S., Cruz, F. R. G., & Chung, W. Y. (2018). Characterization of a 0.35-micron-based analog MPPT IC at various process corners. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1-9), 179-186. Retrieved from

van der Hoek, W., Sakthivadivel, R., Renshaw, M., Silver, J. B., Birley, M. H., & Konradsen, F. (2001). Alternate wet/dry irrigation in rice cultivation: A practical way to save water and control malaria and Japanese encephalitis? Colombo, Sri Lanka: International Water Management Institute (IWMI).

Veeramanikandasamy, T., Sambath, K., Rajendran, K., & Sangeetha, D. (2014). Remote monitoring and closed loop control system for social modernization in agricultural system using GSM and Zigbee technology. 2014 International Conference on Advances in Electrical Engineering, ICAEE 2014 (pp. 1-4). Vellore, India: IEEE.

Yumang, A. N., Paglinawan, A. C., Perez, L. A. A., Fidelino, J. F. F., & Santos, J. B. C. (2017). Soil infiltration rate as a parameter for soil moisture and temperature based Irrigation System. In 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE) (pp. 286-291). Penang, Malaysia: IEEE.

Zawawi, M. A. M., Mustapha, S., & Puasa, Z. (2010). Determination of water requirement in a paddy field at Seberang Perak rice cultivation area. Journal of the Institution of Engineers, Malaysia, 71(4), 32-41. Retrieved from


Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.