Yield Evaluation of Brassica rapa, Lactuca sativa, and Brassica integrifolia Using Image Processing in an IoT-Based Aquaponics with Temperature-Controlled Greenhouse
Abstract
The paper introduced the development of a self-sustainable smart aquaponics system in a temperature-controlled greenhouse with a monitoring and automatic correction system using an Android device through the Internet of Things (IoT) and plant growth monitoring system through image processing using Raspberry Pi. The system involves the acquiring of real-time data detected by the light intensity sensor, and air temperature and humidity sensor. It also includes the monitoring of the pH level and temperature of the recirculating water of the system. If the acquired data is not within the threshold range, the correcting devices, namely grow lights, exhaust and inlet fans, evaporative cooler, aerator, and peristaltic buffer device were automatically triggered by the system to correct and achieve its normal status. The internet remote access includes the effective wireless transmission and reception of data reports between the system and an Android unit with the Android application in real-time. The study focused on the evaluation of two experimental set-ups comparing the plant growth between conventional soil-based farming and the smart aquaponics system using image processing. After data gathering, results showed that the smart aquaponics set-up successfully produced a yield better than the conventional farming set-up.
Keywords
Full Text:
PDFReferences
Amado, T. M., Valenzuela, I. C., & Orillo, J. W. F. (2016). Horticulture of lettuce (Lactuvasativa L.) using red and blue led with pulse lighting treatment and temperature control in SNAP hydroponics setup. Jurnal Teknologi, 78(5–9), 67–71. Retrieved from website
Anire, R. B., Cruz, F. R. G., & Agulto, I. C. (2017). Environmental wireless sensor network using raspberry Pi 3 for greenhouse monitoring system. In 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1–5). Manila, Philippines: IEEE. crossref
Cabaccan, C. N., Cruz, F. R. G., & Agulto, I. C. (2017). Wireless sensor network for agricultural environment using raspberry pi based sensor nodes. In 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1–5). Manila, Philippines: IEEE. crossref
Calangian, X. A. P., Gonzales, J. Y. C., Hilario, C. A. N., Lopez, J. M. M., Rulona, B. L. E., Valencia, I. J. C., … Dadios, E. P. (2018). Vision-based canopy area measurements. In 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1–4). Baguio City, Philippines: IEEE. crossref
Chapae, C., Songsri, P., & Jongrungklang, N. (2019). Hydroponics: An alternative method for root and shoot classification on sugarcane genotypes. AGRIVITA Journal of Agricultural Science, 41(2), 351–363. crossref
Crowley, S. J., Molina, T. A., & Burgess, H. J. (2015). A week in the life of full-time office workers: Work day and weekend light exposure in summer and winter. Applied Ergonomics, 46(Part A), 193–200. crossref
De Belen, M. C., & Cruz, F. R. G. (2017). Water quality parameter correlation in a controlled aquaculture environment. In 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1–4). Manila, Philippines: IEEE. crossref
de Luna, R. G., Dadios, E. P., Bandala, A. A., & Vicerra, R. R. P. (2020). Tomato growth stage monitoring for smart farm using deep transfer learning with machine learning-based maturity grading. AGRIVITA Journal of Agricultural Science, 42(1), 24–36. crossref
Easlon, H. M., & Bloom, A. J. (2014). Easy leaf area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences, 2(7), 1400033. crossref
Galido, E., Tolentino, L. K., Fortaleza, B., Corvera, R. J., De Guzman, A., Española, V. J., … Jorda Jr, R. (2019). Development of a solar-powered smart aquaponics system through internet of things (IoT). Lecture Notes on Research and Innovation in Computer Engineering and Computer Sciences, 31–39.
Jorda Jr, R., Alcabasa, C., Buhay, A., Dela Cruz, E. C., Mendoza, J. P., Tolentino, A., … Arago, N. (2019). Automated smart wick system-based microfarm using internet of things. Lecture Notes on Research and Innovation in Computer Engineering and Computer Sciences, 68–74. Retrieved from pdf
Kung, C.-P., Chiang, W.-J., Chen, Y.-J., Wang, P.-H., Wang, M.-H., Ho, J.-C., & Lee, C.-C. (2011). P-192: Novel flexible photo sensing pixel for large size electrophoretic display with pen writing function. SID Symposium Digest of Technical Papers, 42, 1822–1825. crossref
Mjoun, K., Rosentrater, K., & Brown, M. L. (2010). Tilapia: Environmental biology and nutritional requirements. Fact Sheets. South Dakota. Retrieved from website
Muhamad, A. (2015). Automatic system for car headlamp. Universiti Teknikal Malaysia Melaka. Retrieved from website
Murad, S. A. Z., Harun, A., Mohyar, S. N., Sapawi, R., & Ten, S. Y. (2017). Design of aquaponics water monitoring system using Arduino microcontroller. AIP Conference Proceedings, 1885(1), 020248. crossref
Nagayo, A. M., Mendoza, C., Vega, E., Al Izki, R. K. S., & Jamisola, R. S. (2017). An automated solar-powered aquaponics system towards agricultural sustainability in the Sultanate of Oman. In 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC) (pp. 42–49). Singapore: IEEE. crossref
Rakocy, J. E., Bailey, D. S., Shultz, R. C., & Thoman, E. S. (2004). Update on tilapia and vegetable production in the UVI aquaponic system. Proceedings of the 6th International Symposium on Tilapia in Aquaculture “New Dimensions on Farmed Tilapia,” 1–15. Retrieved from pdf
Rakocy, James E. (2012). Aquaponics-Integrating fish and plant culture. In J. H. Tidwell (Ed.), Aquaculture Production Systems (pp. 344–386). Wiley-Blackwell. crossref
Robinson, J. (2014). Aquaponics vs hydroponics: The effect of differing nutrient levels on plant growth. In Proceedings of the 9th Annual Thompson Rivers University “Undergraduate Research and Innovation Conference” (pp. 21–49). Kamloops, BC: Thompson Rivers University. Retrieved from pdf
Sace, C. F., & Fitzsimmons, K. M. (2013). Vegetable production in a recirculating aquaponic system using Nile tilapia (Oreochromis niloticus) with and without freshwater prawn (Macrobrachium rosenbergii). Academia Journal of Agricultural Research, 1(12), 236–250. crossref
Salamah, A., Fadilah, N., Khoiriyah, I., & Hendrayanti, D. (2019). Application of N2-fixing cyanobacteria nostoc sp. SO-A31 to hydroponically grown water spinach (Ipomoea aquatica L.). AGRIVITA Journal of Agricultural Science, 41(2), 325–334. crossref
Savidov, N. A., Hutchings, E., & Rakocy, J. E. (2007). Fish and plant production in a recirculating aquaponic system: A new approach to sustainable agriculture in Canada. In K. K. Chow (Ed.), International Conference and Exhibition on Soilless Culture: ICESC 2005 (pp. 209–221). Singapore: International Society for Horticultural Science (ISHS). crossref
Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A. (2014). Small-scale aquaponic food production: Integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper 589. Rome, IT: Food and Agriculture Organization of the United Nations. Retrieved from pdf
Tai, W.-C., Tseng, Y.-C., Chiang, I.-T., Lin, Y.-S., Chung, W.-Y., Wu, K.-W., & Yeh, Y.-H. (2017). Development of a multi-parameter plant growth monitoring and control system for quality agriculture application. In 2017 International Conference on Applied System Innovation (ICASI) (pp. 1130–1133). Sapporo, JP: IEEE. crossref
Thorarinsdottir, R. I. (Ed.). (2015). Aquaponics guidelines. Reykjavik, Iceland: Haskolaprent. Retrieved from website
Tolentino, L. K., Lapuz, K. T., Corvera, R. J., De Guzman, A., Española, V. J., Gambota, C., & Gungon, A. (2017). Aquadroid: An app for aquaponics control and monitoring. In 6th Pacific-Asia Conference on Mechanical Engineering (6th PACME 2017); 6th International Conference on Civil Engineering (6th ICCE 2017) (pp. 1–8). Retrieved from website
Tolentino, L. K. S., Fernandez, E.O., Jorda, R. J. L., Amora, S. N. D., Bartolata, D. K. T., Sarucam, J. R. V., Sobrepeña, J. C. L., Sombol, K. Y. P. (2019). Development of an IoT-based Aquaponics Monitoring and Correction System with Temperature-Controlled Greenhouse. In 16th International SoC Design Conference (ISOCC 2019) (pp. 1-2). Jeju, KR: IEEE. crossref
Tyson, R. V., Simonne, E. H., Treadwell, D. D., White, J. M., & Simonne, A. (2008). Reconciling pH for ammonia biofiltration and cucumber yield in a recirculating aquaponic system with perlite biofilters. HortScience, 43(3), 719–724. crossref
Yeh, Y.-H. F., Lai, T.-C., Liu, T.-Y., Liu, C.-C., Chung, W.-C., & Lin, T.-T. (2014). An automated growth measurement system for leafy vegetables. Biosystems Engineering, 117, 43–50. crossref
DOI: http://doi.org/10.17503/agrivita.v42i3.2600
Copyright (c) 2020 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.