Inheritance Pattern of Fruit Color and Shape in Multi-Pistil and Purple Tomato Crossing

Mahfud Mahfud, Rudi Hari Murti

Abstract


Purple tomato is the only cultivated tomato containing anthocyanin inside the fruit, while multi-pistil tomato has a unique shape and the ability to be split into smaller parts without damaging the whole fruit. Purple tomato breeding is a new direction of agriculture research to enrich antioxidant fruit, which nowadays is increasingly in demand. The objective of this research was to obtain multi-pistil tomato fruit containing anthocyanin (purple colored), also to discover the inheritance patterns and heritability of qualitative traits related to fruit color and shape obtained from multi-pistil and purple tomato crossing. This research was conducted using seven populations consisted of 2 parental populations (Multi-pistil Tomato and Purple Tomato), 2 first progeny populations (F1 and F1 Reciprocal), 2 backcross populations (BC1.1 and BC1.2), and second progeny population (F2). The result showed that pistil type, unripe fruit color, ripe fruit color, fruit shape and fruit type were inherited autosomally. The inheritance pattern of the traits followed the epistasis gene interaction with moderate to high heritability value.


Keywords


Anthocyanin; Multi-pistil Tomato; Purple Tomato

Full Text:

PDF

References


Akhtar, M. S., Goldschmidt, E. E., John, I., Rodoni, S., Matile, P., & Grierson, D. (1999). Altered patterns of senescence and ripening in gf, a stay-green mutant of tomato (Lycopersicon esculentum Mill.). Journal of Experimental Botany, 50(336), 1115–1122. https://doi.org/10.1093/jxb/50.336.1115

Boches, P., & Myers, J. (2007). The anthocyanin fruit tomato gene (Aft) is associated with a DNA polymorphism in a MYB transcription factor. HortScience, 42(4), 856. https://doi.org/10.21273/HORTSCI.42.4.849

Cong, B., Barrero, L. S., & Tanksley, S. D. (2008). Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature Genetics, 40, 800–804. https://doi.org/10.1038/ng.144

Dar, B. N., & Sharma, S. (2011). Total phenoloc content of cereal brans using conventional and microwave assisted extraction. American Journal of Food Technology, 6(12), 1045-1053. https://doi.org/10.3923/ajft.2011.1045.1053

de Pascual-Teresa, S., & Sanchez-Ballesta, M. T. (2008). Anthocyanins: from plant to health. Phytochemistry Reviews, 7, 281–299. https://doi.org/10.1007/s11101-007-9074-0

Del Medico, A. P., Cabodevila, V. G., Vitelleschi, M. S., & Pratta, G. R. (2019). Multivariate estimate of heritability for quality traits in tomatoes by the multiple factor analysis. Pesquisa Agropecuaria Brasileira, 54, e00064. https://doi.org/10.1590/S1678-3921.pab2019.v54.00064

Fardhani, A., Ambarwati, E., Trisnowati, S., & Murti, R. H. (2013). Potensi hasil, mutu, dan daya simpan buah enam galur mutan harapan tomat (Solanum lycopersicum L.). Vegetalika, 2(4), 88–100. Retrieved from https://jurnal.ugm.ac.id/jbp/article/view/4008

Fernández-Lozano, A., Yuste-Lisbona, F. J., Pérez-Martín, F., Pineda, B., Moreno, V., Lozano, R., & Angosto, T. (2015). Mutation at the tomato EXCESSIVE NUMBER OF FLORAL ORGANS (ENO) locus impairs floral meristem development, thus promoting an increased number of floral organs and fruit size. Plant Science, 232, 41–48. https://doi.org/10.1016/j.plantsci.2014.12.007

Fray, R. G., & Grierson, D. (1993). Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Molecular Biology, 22, 589–602. https://doi.org/10.1007/BF00047400

Gonzali, S., Mazzucato, A., & Perata, P. (2009). Purple as a tomato: towards high anthocyanin tomatoes. Trends in Plant Science, 14(5), 237–241. https://doi.org/10.1016/j.tplants.2009.02.001

Grant, B. (2016). Reisetomate heirloom tomato plant history. Retrieved from https://blog.gardeningknowhow.com/tbt/reisetomateheirloom-tomatoes/

Hallauer, A. R. (2011). Evolution of plant breeding. Crop Breeding and Applied Biotechnology, 11(3), 197-206. https://doi.org/10.1590/S1984-70332011000300001

Hassan, H. A., & Abdel-Aziz, A. F. (2010). Evaluation of free radical-scavenging and anti-oxidant properties of black berry against fluoride toxicity in rats. Food and Chemical Toxicology, 48(8–9), 1999–2004. https://doi.org/10.1016/j.fct.2010.05.018

Iqbal, M., Ahmad, W., Shafi, J., Ayub, C. M., Atiq, M., Shahid, M., & Saleem, M. (2013). Comparative genetic variability and heritability in some tomato varieties against fruit borer, shape disorders and their correlation. Bioengineering and Bioscience, 1(2), 17–23. Retrieved from http://www.hrpub.org/journals/article_info.php?aid=630

Jones, C. M., Mes, P., & Myers, J. R. (2003). Characterization and inheritance of the Anthocyanin fruit (Aft) tomato. Journal of Heredity, 94(6), 449–456. https://doi.org/10.1093/jhered/esg093

Knievel, D. C., Abdel-Aal, E. S. M., Rabalski, I., Nakamura, T., & Hucl, P. (2009). Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.). Journal of Cereal Science, 50(1), 113–120. https://doi.org/10.1016/j.jcs.2009.03.007

Li, F., Song, X., Wu, L., Chen, H., Liang, Y., & Zhang, Y. (2018). Heredities on fruit color and pigment content between green and purple fruits in tomato. Scientia Horticulturae, 235, 391–396. https://doi.org/10.1016/j.scienta.2018.03.030

Lindstrom, E. W. (1927). The inheritance of ovate and related shapes of tomato fruits. Journal of Agricultural Research, 34(10), 961-985. Retrieved from https://naldc.nal.usda.gov/download/IND43967444/PDF

Liu, J., Van Eck, J., Cong, B., & Tanksley, S. D. (2002). A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13302–13306. https://doi.org/10.1073/pnas.162485999

Lönnig, W. E., & Saedler, H. (2001). Baur, Erwin. In S. Brenner, & J. Miller (Eds.), Encyclopedia of Genetics (pp. 199-203). Cambridge: Academic Press. Retrieved from https://www.elsevier.com/books/encyclopedia-ofgenetics/9780122270802

Ma, S.-C., Zhang, G.-S., Liu, H.-W., Wang, J.-W., & Wang, X.-L. (2000). Studies on the application of multiovary character to hybrid wheat. I. Multi-ovary gene loci and cytoplasm effect. Acta Botanica Boreali-Occidentalia Sinica, 20(6), 949–953. Retrieved from https://europepmc.org/article/cba/341167

Mayer, K. F. X., Schoof, H., Haecker, A., Lenhard, M., Jürgens, G., & Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 95(6), 805–815. https://doi.org/10.1016/S0092-8674(00)81703-1

Mes, P. J., Boches, P., Myers, J. R., & Durst, R. (2008). Characterization of tomatoes expressing anthocyanin in the fruit. Journal of the American Society for Horticultural Science, 133(2), 262-269. https://doi.org/10.21273/JASHS.133.2.262

Mohamed, S. M., Ali, E. E., & Mohamed, T. Y. (2012). Study of heritability and genetic variability among different plant and fruit characters of tomato (Solanum lycopersicum L.). International Journal of Scientific & Technology Research, 1(2), 55–58. Retrieved from http://www.ijstr.org/final-print/march2012/Study-Of-HeritabilityAnd-Genetic-Variability-Among-Different-PlantAnd-Fruit-Characters-Of-Tomato-solanumLycopersicum-L.pdf

Muir, S. R., Collins, G. J., Robinson, S., Hughes, S., Bovy, A., De Vos, C. H. R., ... & Verhoeyen, M. E. (2001). Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology, 19, 470–474. https://doi.org/10.1038/88150

Murti, R. H., Ambarwati, E., & Supriyanta. (2000). Genetika sifat komponen hasil tanaman tomat. Mediagama, 2(2), 58-64. Retrieved from https://www.researchgate.net/publication/236177641_Genetika_Sifat_Komponen_Hasil_Tanaman_Tomat

Murti, R. H., Kurniawati, T., & Nasrullah. (2004). Pola pewarisan sifat buah tomat. Zuriat, 15(2), 1-13. https://doi.org/10.24198/zuriat.v15i2.6806

Mustafa, M., Syukur, M., Sutjahjo, S. H., & Sobir. (2016). Pewarisan karakter kualitatif dan kuantitatif pada hipokotil dan kotiledon tomat (Solanum lycopersicum L.) silangan IPB T64 x IPB T3. Jurnal Hortikultura Indonesia, 7(3), 155–164. https://doi.org/10.29244/jhi.7.3.155-164

Pal, D. (2017). Epistasis. In: J. Vonk, & T. Shackelford (Eds.), Encyclopedia of Animal Cognition and Behavior (pp. 1-64). Cham: Springer. https://doi.org/10.1007/978-3-319-47829-6_58-1

Piepho, H.-P., & Möhring, J. (2007). Computing heritability and selection response from unbalanced plant breeding trials. Genetics, 177 (3), 1881–1888. http://doi.org/10.1534/genetics.107.074229

Rachmatika, W., Murti, R. H., & Basunanda, P. (2017). Uji daya hasil dan kualitas buah tujuh hibrida tomat (Solanum lycopersicum L.) di dataran rendah. Vegetalika, 6(2), 55–65. https://doi.org/10.22146/veg.26172

Rodríguez, G. R., Muños, S., Anderson, C., Sim, S.-C., Michel, A., Causse, M., … van der Knaap, E. (2011). Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiology, 156(1), 275–285. https://doi.org/10.1104/pp.110.167577

Sahu, G. R., Sarawgi, A. K., & Tiwari, J. K. (2017). New genotypes with multiple pistils and inheritance pattern of this trait in rice. Electronic Journal of Plant Breeding, 8(3), 998–1000. https://doi.org/10.5958/0975-928X.2017.00144.2

Torres, C. A., Davies, N. M., Yañez, J. A., & Andrews, P. K. (2005). Disposition of selected flavonoids in fruit tissues of various tomato (Lycopersicon esculentum Mill.) genotypes. Journal of Agricultural and Food Chemistry, 53(24), 9536–9543. https://doi.org/10.1021/jf051176t

UPOV. (2001). Guidlines for the conduct tests for distinctness, uniformity and stability: Tomato (Lycopersicon lycopersicum (L.) Karsten ex Farw.). Geneva: International Union for The Protection of New Varieties of Plants. Retrieved from https://www.upov.int/en/publications/tgrom/tg044/tg_44_10.pdf

Vitezica, Z. G., Reverter, A., Herring, W., & Legarra, A. (2018). Dominance and epistatic genetic variances for litter size in pigs using genomic models. Genetics Selection Evolution, 50, 71. https://doi.org/10.1186/s12711-018-0437-3

Wang, Z., Xu, D., Ji, J., Wang, J., Wang, M., Ling, H., … Li, J. (2009). Genetic analysis and molecular markers associated with multi-gynoecia (Mg) gene in Trigrain wheat. Canadian Journal of Plant Science, 89(5), 845–850. https://doi.org/10.4141/CJPS09022

Wilkie, A. O. M. (2006). Dominance and recessivity. In Encyclopedia of Life Sciences (pp. 1-10). Oxford: John Wiley & Sons. https://doi.org/10.1038/npg.els.0005475

Xiao, H., Jiang, N., Schaffner, E., Stockinger, E. J., & van der Knaap, E. (2008). A retrotransposonmediated gene duplication underlies morphological variation of tomato fruit. Science, 319(5869), 1527–1530. https://doi.org/10.1126/science.1153040

Zhang, Y., & Stommel, J. R. (2000). RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (Mo(B)), two genes which influence β-carotene accumulation in fruit of tomato (Lycopersicon esculentum Mill.). Theoretical and Applied Genetics, 100, 368–375. https://doi.org/10.1007/s001220050048

Zhu, X. xin, Ni, Y. jing, He, R. shi, Jiang, Y. mei, Li, Q. yun, & Niu, J. shan. (2019). Genetic mapping and expressivity of a wheat multi-pistil gene in mutant 12TP. Journal of Integrative Agriculture, 18(3), 532–538. https://doi.org/10.1016/S2095-3119(18)61935-5




DOI: http://doi.org/10.17503/agrivita.v42i3.2515

Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.