Inheritance Pattern of Fruit Color and Shape in Multi-Pistil and Purple Tomato Crossing

Mahfud Mahfud, Rudi Hari Murti

Abstract


Purple tomato is the only cultivated tomato containing anthocyanin inside the fruit, while multi-pistil tomato has a unique shape and the ability to be split into smaller parts without damaging the whole fruit. Purple tomato breeding is a new direction of agriculture research to enrich antioxidant fruit, which nowadays is increasingly in demand. The objective of this research was to obtain multi-pistil tomato fruit containing anthocyanin (purple colored), also to discover the inheritance patterns and heritability of qualitative traits related to fruit color and shape obtained from multi-pistil and purple tomato crossing. This research was conducted using seven populations consisted of 2 parental populations (Multi-pistil Tomato and Purple Tomato), 2 first progeny populations (F1 and F1 Reciprocal), 2 backcross populations (BC1.1 and BC1.2), and second progeny population (F2). The result showed that pistil type, unripe fruit color, ripe fruit color, fruit shape and fruit type were inherited autosomally. The inheritance pattern of the traits followed the epistasis gene interaction with moderate to high heritability value.


Keywords


Anthocyanin; Multi-pistil Tomato; Purple Tomato

Full Text:

PDF

References


Akhtar, M. S., Goldschmidt, E. E., John, I., Rodoni, S., Matile, P., & Grierson, D. (1999). Altered patterns of senescence and ripening in gf, a stay-green mutant of tomato (Lycopersicon esculentum Mill.). Journal of Experimental Botany, 50(336), 1115–1122. crossref

Boches, P., & Myers, J. (2007). The anthocyanin fruit tomato gene (Aft) is associated with a DNA polymorphism in a MYB transcription factor. HortScience, 42(4), 856. crossref

Cong, B., Barrero, L. S., & Tanksley, S. D. (2008). Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature Genetics, 40, 800–804. crossref

Dar, B. N., & Sharma, S. (2011). Total phenoloc content of cereal brans using conventional and microwave assisted extraction. American Journal of Food Technology, 6(12), 1045-1053. crossref

de Pascual-Teresa, S., & Sanchez-Ballesta, M. T. (2008). Anthocyanins: from plant to health. Phytochemistry Reviews, 7, 281–299. crossref

Del Medico, A. P., Cabodevila, V. G., Vitelleschi, M. S., & Pratta, G. R. (2019). Multivariate estimate of heritability for quality traits in tomatoes by the multiple factor analysis. Pesquisa Agropecuaria Brasileira, 54, e00064. crossref

Fardhani, A., Ambarwati, E., Trisnowati, S., & Murti, R. H. (2013). Potensi hasil, mutu, dan daya simpan buah enam galur mutan harapan tomat (Solanum lycopersicum L.). Vegetalika, 2(4), 88–100. Retrieved from website

Fernández-Lozano, A., Yuste-Lisbona, F. J., Pérez-Martín, F., Pineda, B., Moreno, V., Lozano, R., & Angosto, T. (2015). Mutation at the tomato EXCESSIVE NUMBER OF FLORAL ORGANS (ENO) locus impairs floral meristem development, thus promoting an increased number of floral organs and fruit size. Plant Science, 232, 41–48. crossref

Fray, R. G., & Grierson, D. (1993). Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Molecular Biology, 22, 589–602. crossref

Gonzali, S., Mazzucato, A., & Perata, P. (2009). Purple as a tomato: towards high anthocyanin tomatoes. Trends in Plant Science, 14(5), 237–241. crossref

Grant, B. (2016). Reisetomate heirloom tomato plant history. Retrieved from website

Hallauer, A. R. (2011). Evolution of plant breeding. Crop Breeding and Applied Biotechnology, 11(3), 197-206. crossref

Hassan, H. A., & Abdel-Aziz, A. F. (2010). Evaluation of free radical-scavenging and anti-oxidant properties of black berry against fluoride toxicity in rats. Food and Chemical Toxicology, 48(8–9), 1999–2004. crossref

Iqbal, M., Ahmad, W., Shafi, J., Ayub, C. M., Atiq, M., Shahid, M., & Saleem, M. (2013). Comparative genetic variability and heritability in some tomato varieties against fruit borer, shape disorders and their correlation. Bioengineering and Bioscience, 1(2), 17–23. Retrieved from website

Jones, C. M., Mes, P., & Myers, J. R. (2003). Characterization and inheritance of the Anthocyanin fruit (Aft) tomato. Journal of Heredity, 94(6), 449–456. crossref

Knievel, D. C., Abdel-Aal, E. S. M., Rabalski, I., Nakamura, T., & Hucl, P. (2009). Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.). Journal of Cereal Science, 50(1), 113–120. crossref

Li, F., Song, X., Wu, L., Chen, H., Liang, Y., & Zhang, Y. (2018). Heredities on fruit color and pigment content between green and purple fruits in tomato. Scientia Horticulturae, 235, 391–396. crossref

Lindstrom, E. W. (1927). The inheritance of ovate and related shapes of tomato fruits. Journal of Agricultural Research, 34(10), 961-985. Retrieved from pdf

Liu, J., Van Eck, J., Cong, B., & Tanksley, S. D. (2002). A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13302–13306. crossref

Lönnig, W. E., & Saedler, H. (2001). Baur, Erwin. In S. Brenner, & J. Miller (Eds.), Encyclopedia of Genetics (pp. 199-203). Cambridge: Academic Press. Retrieved from website

Ma, S.-C., Zhang, G.-S., Liu, H.-W., Wang, J.-W., & Wang, X.-L. (2000). Studies on the application of multiovary character to hybrid wheat. I. Multi-ovary gene loci and cytoplasm effect. Acta Botanica Boreali-Occidentalia Sinica, 20(6), 949–953. Retrieved from website

Mayer, K. F. X., Schoof, H., Haecker, A., Lenhard, M., Jürgens, G., & Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 95(6), 805–815. crossref

Mes, P. J., Boches, P., Myers, J. R., & Durst, R. (2008). Characterization of tomatoes expressing anthocyanin in the fruit. Journal of the American Society for Horticultural Science, 133(2), 262-269. crossref

Mohamed, S. M., Ali, E. E., & Mohamed, T. Y. (2012). Study of heritability and genetic variability among different plant and fruit characters of tomato (Solanum lycopersicum L.). International Journal of Scientific & Technology Research, 1(2), 55–58. Retrieved from pdf

Muir, S. R., Collins, G. J., Robinson, S., Hughes, S., Bovy, A., De Vos, C. H. R., ... & Verhoeyen, M. E. (2001). Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology, 19, 470–474. crossref

Murti, R. H., Ambarwati, E., & Supriyanta. (2000). Genetika sifat komponen hasil tanaman tomat. Mediagama, 2(2), 58-64. Retrieved from website

Murti, R. H., Kurniawati, T., & Nasrullah. (2004). Pola pewarisan sifat buah tomat. Zuriat, 15(2), 1-13. crossref

Mustafa, M., Syukur, M., Sutjahjo, S. H., & Sobir. (2016). Pewarisan karakter kualitatif dan kuantitatif pada hipokotil dan kotiledon tomat (Solanum lycopersicum L.) silangan IPB T64 x IPB T3. Jurnal Hortikultura Indonesia, 7(3), 155–164. crossref

Pal, D. (2017). Epistasis. In: J. Vonk, & T. Shackelford (Eds.), Encyclopedia of Animal Cognition and Behavior (pp. 1-64). Cham: Springer. crossref

Piepho, H.-P., & Möhring, J. (2007). Computing heritability and selection response from unbalanced plant breeding trials. Genetics, 177 (3), 1881–1888. crossref

Rachmatika, W., Murti, R. H., & Basunanda, P. (2017). Uji daya hasil dan kualitas buah tujuh hibrida tomat (Solanum lycopersicum L.) di dataran rendah. Vegetalika, 6(2), 55–65. crossref

Rodríguez, G. R., Muños, S., Anderson, C., Sim, S.-C., Michel, A., Causse, M., … van der Knaap, E. (2011). Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiology, 156(1), 275–285. crossref

Sahu, G. R., Sarawgi, A. K., & Tiwari, J. K. (2017). New genotypes with multiple pistils and inheritance pattern of this trait in rice. Electronic Journal of Plant Breeding, 8(3), 998–1000. crossref

Torres, C. A., Davies, N. M., Yañez, J. A., & Andrews, P. K. (2005). Disposition of selected flavonoids in fruit tissues of various tomato (Lycopersicon esculentum Mill.) genotypes. Journal of Agricultural and Food Chemistry, 53(24), 9536–9543. crossref

UPOV. (2001). Guidlines for the conduct tests for distinctness, uniformity and stability: Tomato (Lycopersicon lycopersicum (L.) Karsten ex Farw.). Geneva: International Union for The Protection of New Varieties of Plants. Retrieved from pdf

Vitezica, Z. G., Reverter, A., Herring, W., & Legarra, A. (2018). Dominance and epistatic genetic variances for litter size in pigs using genomic models. Genetics Selection Evolution, 50, 71. crossref

Wang, Z., Xu, D., Ji, J., Wang, J., Wang, M., Ling, H., … Li, J. (2009). Genetic analysis and molecular markers associated with multi-gynoecia (Mg) gene in Trigrain wheat. Canadian Journal of Plant Science, 89(5), 845–850. crossref

Wilkie, A. O. M. (2006). Dominance and recessivity. In Encyclopedia of Life Sciences (pp. 1-10). Oxford: John Wiley & Sons. crossref

Xiao, H., Jiang, N., Schaffner, E., Stockinger, E. J., & van der Knaap, E. (2008). A retrotransposonmediated gene duplication underlies morphological variation of tomato fruit. Science, 319(5869), 1527–1530. crossref

Zhang, Y., & Stommel, J. R. (2000). RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (Mo(B)), two genes which influence β-carotene accumulation in fruit of tomato (Lycopersicon esculentum Mill.). Theoretical and Applied Genetics, 100, 368–375. crossref

Zhu, X. xin, Ni, Y. jing, He, R. shi, Jiang, Y. mei, Li, Q. yun, & Niu, J. shan. (2019). Genetic mapping and expressivity of a wheat multi-pistil gene in mutant 12TP. Journal of Integrative Agriculture, 18(3), 532–538. crossref




DOI: http://doi.org/10.17503/agrivita.v42i3.2515

Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.