Combination Effect Between Lead and Salinity on Anatomical Structure of Date Palm Phoenix dactylifera L. Seedlings

Haleemah J. Al-Aradi, Mohammed A. Al-Najjar, Khairullah M. Awad, Mohammed H. Abass

Abstract


The study was conducted to evaluate the effect of lead (Pb) stress alone or in combination with salinity on the anatomical structure of roots and leaves of Date palm seedlings. Pb was added to soil at 100, 300 and 600 mg/kg concentrations as a pure aqueous solution or mixed with saline solution at 200 mM. Compared with the control, the microscopic study of root tissues showed that all treatments caused a significant increase in the thickness of epidermis, endodermis and pericycle, whereas the cortex thickness and diameters of the vascular cylinder, protoxylem and metaxylem decreased significantly. However, only the phloem diameter was affected significantly by 600 mg/kg Pb with or without salinity. Compared with the control, results on leaf tissues revealed that treatment with 300 and 600 mg/kg Pb alone or in combination with salinity led to a significant increase in the thickness of cuticle layer, upper epidermis and lower epidermis. Results also showed a significant increase in the diameter of tannin and palisade cells when treated with 100 mg/kg Pb with or without salinity. Small vascular bundle diameter decreased significantly in seedlings exposed to Pb at all examined concentrations with or without salinity.


Keywords


Abiotic stress; Dermis; Metaxylem; Protoxylem; Vascular bundle

Full Text:

PDF

References


Abass, M. H., Hassan, Z. K., & Al-Jabary, K. M. A. (2015). Assessment of heavy metals pollution in soil and date palm (Phoenix dactylifera L.) leaves sampled from Basra/Iraq governorate. AES Bioflux, 7(1), 52–59. Retrieved from https://search.proquest.com/openview/096481df590560a57230331767b2d647/1?pq-origsite=gscholar&cbl=2046426

Abass, M. H., Neama, J. D., Al-Jabary, K., & Abass, M. H. (2016). Biochemical responses to cadmium and lead stresses in date palm (Phoenix dactylifera L.) plants. AAB Bioflux, 8(3), 92–110. Retrieved from http://www.aab.bioflux.com.ro/docs/2016.92-110.pdf

Abd Rabou, A. F. N., & Radwan, E. S. (2017). The current status of the date palm (Phoenix dactylifera) and its uses in the Gaza Strip, Palestine. Biodiversitas Journal of Biological Diversity, 18(3), 1047–1061. https://doi.org/10.13057/biodiv/d180324

Acosta, J. A., Jansen, B., Kalbitz, K., Faz, A., & Martínez-Martínez, S. (2011). Salinity increases mobility of heavy metals in soils. Chemosphere, 85(8), 1318-1324. https://doi.org/10.1016/j.chemosphere.2011.07.046

Al Hassan, M., Gohari, G., Boscaiu, M., Vicente, O., & Grigore, M. N. (2015). Anatomical modifications in two Juncus species under salt stress conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(2), 501–506. https://doi.org/10.15835/nbha43210108

Alhammadi, M. S., & Kurup, S. S. (2012). Impact of salinity stress on date palm Phoenix dactylifera: A review. In P. Sharma (Ed.), Crop Production Technologies (pp. 169–178). InTech. https://doi.org/10.5772/29527

Al-Jabary, K. M. A., Neama, J. D., & Abass, M. H. (2016). Seasonal variation of heavy metals pollution in soil and date palm Phoenix dactylifera L. leaves at Basra governorate/Iraq. International Journal of Scientific Research in Environmental Sciences, 4(6), 186–195. Retrieved from https://www.researchgate.net/publication/328687963_Full_Length_Research_Paper_Seasonal_Variation_of_Heavy_Metals_Pollution_in_Soil_and_Date_Palm_Phoenix_dactylifera_L_Leaves_at_Basra_Governorate_Iraq

Al-Khashman, O. A., Al-Muhtaseb, A. H., & Ibrahim, K. A. (2011). Date palm (Phoenix dactylifera L.) leaves as biomonitors of atmospheric metal pollution in arid and semi-arid environments. Environmental Pollution, 159(6), 1635–1640. https://doi.org/10.1016/j.envpol.2011.02.045

Alves, L. Q., de Jesus, R. M., de Almeida, A. A. F., Souza, V. L., & Mangabeira, P. A. O. (2014). Effects of lead on anatomy, ultrastructure and concentration of nutrients in plants Oxycaryum cubense (Poep. & Kunth) Palla: A species with phytoremediator potential in contaminated watersheds. Environmental Science and Pollution Research, 21, 6558–6570. https://doi.org/10.1007/s11356-014-2549-9

Atabayeva, S., Nurmahanova, A., Minocha, S., Ahmetova, A., Kenzhebayeva, S., Aidosova, S., … Li, T. (2013). The effect of salinity on growth and anatomical attributes of barley seedling (Hordeum vulgare L.). African Journal of Biotechnology, 12(18), 2366–2377. Retrieved from https://academicjournals.org/journal/AJB/article-full-text-pdf/300FB9422028

Bastías, E., González-Moro, M. B., & González-Murua, C. (2015). Combined effects of excess boron and salinity on root histology of Zea mays L. Amylacea from the Lluta valley (Arica, Chile). Idesia, 33(2), 09–20. https://doi.org/10.4067/s0718-34292015000200002

Batool, R., Hameed, M., Ashraf, M., Ahmad, M. S. A., & Fatima, S. (2015). Physio-anatomical responses of plants to heavy metals. In M. Öztürk, M. Ashraf, A. Aksoy, & M. Ahmad (Eds.), Phytoremediation for Green Energy (pp. 79–96). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-7887-0_5

Céccoli, G., Ramos, J. C., Ortega, L. I., Acosta, J. M., & Perreta, M. G. (2011). Salinity induced anatomical and morphological changes in Chloris gayana Kunth roots. Biocell, 35(1), 9–17. Retrieved from https://repositorio.inta.gob.ar/xmlui/bitstream/handle/20.500.12123/7458/INTA_CIAP_InstitutodeFisiologiayRecursosGeneticosVegetales_Ortega_LI_Salinity_induced_anatomical_and_morphological_changes.pdf?sequence=1&isAllowed=y

Emamverdian, A., Ding, Y., Xie, Y., & Sangari, S. (2018). Silicon mechanisms to ameliorate heavy metal stress in plants. BioMed Research International, 2018, 8492898. https://doi.org/10.1155/2018/8492898

Farhana, S., Rashid, P., & Karmoker, J. L. (2014). Salinity induced anatomical changes in maize (Zea mays L. CV. BARI‐7). Dhaka University Journal of Biological Sciences, 23(1), 93-95. https://doi.org/10.3329/dujbs.v23i1.19832

Gomes, M. P., de Sáe Melo Marques, T. C. L. L., de Oliveira Gonçalves Nogueira, M., de Castro, E. M., & Soares, Â. M. (2011). Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Scientia Agricola, 68(5), 566–573. https://doi.org/10.1590/S0103-90162011000500009

Gul, S., Nawaz, M. F., Azeem, M., & Sabir, M. (2016). Interactive effects of salinity and heavy metal stress on eco-physiological responses of two maize (Zea mays L.) cultivars. FUUAST Journal of Biology, 6(1), 81-87. Retrieved from http://fuuastjb.org/index.php/fuuastjb/article/view/95/91

Hatje, V., Payne, T. E., Hill, D. M., McOrist, G., Birch, G. F., & Szymczak, R. (2003). Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environment International, 29(5), 619-629. https://doi.org/10.1016/S0160-4120(03)00049-7

Huang, Y.-Z., Wei, K., Yang, J., Dai, F., & Zhang, G.-P. (2007). Interaction of salinity and cadmium stresses on mineral nutrients, sodium, and cadmium accumulation in four barley genotypes. Journal of Zhejiang University SCIENCE B, 8, 476–485. https://doi.org/10.1631/jzus.2007.B0476

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009

Johnson, D. V., Al-Khayri, J. M., & Jain, S. M. (2013). Seedling date palms (Phoenix dactylifera L.) as genetic resources. Emirates Journal of Food and Agriculture, 25(11), 809–830. https://doi.org/10.9755/ejfa.v25i11.16497

Kadkhodaie, A., Kelich, S., & Baghbani, A. (2012). Effects of salinity levels on heavy metals (Cd, Pb and Ni ) absorption by sunflower and sudangrass plants. Bulletin of Environment Pharmacology and Life Sciences, 1(12), 47-53. Retrieved from http://www.bepls.com/nov_2012/8.pdf

Kadukova, J., & Kalogerakis, N. (2007). Lead accumulation from non-saline and saline environment by Tamarix smyrnensis Bunge. European Journal of Soil Biology, 43(4), 216-223. https://doi.org/10.1016/j.ejsobi.2007.02.004

Karjunita, N., Khumaida, N., & Ardie, S. W. (2019). Different root anatomical changes in salt-tolerant and salt-sensitive foxtail millet genotypes. AGRIVITA Journal of Agricultural Science, 41(1), 88–96. https://doi.org/10.17503/agrivita.v41i1.1786

Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15(4), 523–530. Retrieved from http://www.pjoes.com/Phenolic-Compounds-and-Their-Antioxidant-Activity-in-Plants-Growing-under-Heavy-Metal,87899,0,2.html

Naema, J. D., Abass, M. H., & Al-Jabary, K. M. A. (2017). The effect of cadmium and lead treatments of some anatomical characteristics of date palm Phoenix dactylifera L. cv. Barhi leaves. Basrah Journal For Date Palm Research, 16(1), 55–74. Retrieved from https://www.iasj.net/iasj?func=article&aId=127716

Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1), 88–95. https://doi.org/10.1104/pp.108.129791

Ola, Elbar, H. A., Reham, Farag, E., Eisa, S. S., & Habib, S. A. (2012). Morpho-anatomical changes in salt stressed kallar grass (Leptochloa fusca L. Kunth). Research Journal of Agriculture and Biological Sciences, 8(2), 158–166. Retrieved from http://www.aensiweb.net/AENSIWEB/rjabs/rjabs/2012/158-166.pdf

Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials, 325, 36–58. https://doi.org/10.1016/j.jhazmat.2016.11.063

Singh, S., Srivastava, P. K., Kumar, D., Tripathi, D. K., Chauhan, D. K., & Prasad, S. M. (2015). Morpho-anatomical and biochemical adapting strategies of maize (Zea mays L.) seedlings against lead and chromium stresses. Biocatalysis and Agricultural Biotechnology, 4(3), 286–295. https://doi.org/10.1016/j.bcab.2015.03.004

Tupan, C. I., & Azrianingsih, R. (2016). Accumulation and deposition of lead heavy metal in the tissues of roots, rhizomes and leaves of seagrass Thalassia hemprichii (Monocotyledoneae, Hydrocharitaceae). AACL Bioflux, 9(3), 580–589. Retrieved from http://www.bioflux.com.ro/docs/2016.580-589.pdf

Vollenweider, P., Cosio, C., Günthardt-Goerg, M. S., & Keller, C. (2006). Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Part II Microlocalization and cellular effects of cadmium. Environmental and Experimental Botany, 58(1–3), 25–40. https://doi.org/10.1016/j.envexpbot.2005.06.012

Willey, R. L. (1971). Microtechniques: A laboratory guide. New York: Macmillan Pub. Co. Retrieved from https://www.worldcat.org/title/microtechniques-a-laboratory-guide/oclc/301542131?referer=di&ht=edition

Younis, A., Riaz, A., Ahmed, I., Siddique, M. I., Tariq, U., Hameed, M., & Nadeem, M. (2014). Anatomical changes induced by NaCl stress in root and stem of Gazania harlequin L. Agricultural Communications, 2(3), 8-14. Retrieved from https://www.semanticscholar.org/paper/Anatomical-changes-induced-by-NaCl-stress-in-root-Younis-Riaz/0da8dd25cada38d084bf855759145499468fbd4a?p2df

Zarinkamar, F., Ghelich, S., & Soleimanpour, S. (2013). Toxic effects of pb on anatomy and hypericin content in Hypericum perforatum L. Bioremediation Journal, 17(1), 40–51. https://doi.org/10.1080/10889868.2012.751958




DOI: http://doi.org/10.17503/agrivita.v42i3.2511

Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.