Combination Effect Between Lead and Salinity on Anatomical Structure of Date Palm Phoenix dactylifera L. Seedlings

Haleemah J. Al-Aradi, Mohammed A. Al-Najjar, Khairullah M. Awad, Mohammed H. Abass


The study was conducted to evaluate the effect of lead (Pb) stress alone or in combination with salinity on the anatomical structure of roots and leaves of Date palm seedlings. Pb was added to soil at 100, 300 and 600 mg/kg concentrations as a pure aqueous solution or mixed with saline solution at 200 mM. Compared with the control, the microscopic study of root tissues showed that all treatments caused a significant increase in the thickness of epidermis, endodermis and pericycle, whereas the cortex thickness and diameters of the vascular cylinder, protoxylem and metaxylem decreased significantly. However, only the phloem diameter was affected significantly by 600 mg/kg Pb with or without salinity. Compared with the control, results on leaf tissues revealed that treatment with 300 and 600 mg/kg Pb alone or in combination with salinity led to a significant increase in the thickness of cuticle layer, upper epidermis and lower epidermis. Results also showed a significant increase in the diameter of tannin and palisade cells when treated with 100 mg/kg Pb with or without salinity. Small vascular bundle diameter decreased significantly in seedlings exposed to Pb at all examined concentrations with or without salinity.


Abiotic stress; Dermis; Metaxylem; Protoxylem; Vascular bundle

Full Text:



Abass, M. H., Hassan, Z. K., & Al-Jabary, K. M. A. (2015). Assessment of heavy metals pollution in soil and date palm (Phoenix dactylifera L.) leaves sampled from Basra/Iraq governorate. AES Bioflux, 7(1), 52–59. Retrieved from website

Abass, M. H., Neama, J. D., Al-Jabary, K., & Abass, M. H. (2016). Biochemical responses to cadmium and lead stresses in date palm (Phoenix dactylifera L.) plants. AAB Bioflux, 8(3), 92–110. Retrieved from pdf

Abd Rabou, A. F. N., & Radwan, E. S. (2017). The current status of the date palm (Phoenix dactylifera) and its uses in the Gaza Strip, Palestine. Biodiversitas Journal of Biological Diversity, 18(3), 1047–1061. crossref

Acosta, J. A., Jansen, B., Kalbitz, K., Faz, A., & Martínez-Martínez, S. (2011). Salinity increases mobility of heavy metals in soils. Chemosphere, 85(8), 1318-1324. crossref

Al Hassan, M., Gohari, G., Boscaiu, M., Vicente, O., & Grigore, M. N. (2015). Anatomical modifications in two Juncus species under salt stress conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(2), 501–506. crossref

Alhammadi, M. S., & Kurup, S. S. (2012). Impact of salinity stress on date palm Phoenix dactylifera: A review. In P. Sharma (Ed.), Crop Production Technologies (pp. 169–178). InTech. crossref

Al-Jabary, K. M. A., Neama, J. D., & Abass, M. H. (2016). Seasonal variation of heavy metals pollution in soil and date palm Phoenix dactylifera L. leaves at Basra governorate/Iraq. International Journal of Scientific Research in Environmental Sciences, 4(6), 186–195. Retrieved from website

Al-Khashman, O. A., Al-Muhtaseb, A. H., & Ibrahim, K. A. (2011). Date palm (Phoenix dactylifera L.) leaves as biomonitors of atmospheric metal pollution in arid and semi-arid environments. Environmental Pollution, 159(6), 1635–1640. crossref

Alves, L. Q., de Jesus, R. M., de Almeida, A. A. F., Souza, V. L., & Mangabeira, P. A. O. (2014). Effects of lead on anatomy, ultrastructure and concentration of nutrients in plants Oxycaryum cubense (Poep. & Kunth) Palla: A species with phytoremediator potential in contaminated watersheds. Environmental Science and Pollution Research, 21, 6558–6570. crossref

Atabayeva, S., Nurmahanova, A., Minocha, S., Ahmetova, A., Kenzhebayeva, S., Aidosova, S., … Li, T. (2013). The effect of salinity on growth and anatomical attributes of barley seedling (Hordeum vulgare L.). African Journal of Biotechnology, 12(18), 2366–2377. Retrieved from website

Bastías, E., González-Moro, M. B., & González-Murua, C. (2015). Combined effects of excess boron and salinity on root histology of Zea mays L. Amylacea from the Lluta valley (Arica, Chile). Idesia, 33(2), 09–20. crossref

Batool, R., Hameed, M., Ashraf, M., Ahmad, M. S. A., & Fatima, S. (2015). Physio-anatomical responses of plants to heavy metals. In M. Öztürk, M. Ashraf, A. Aksoy, & M. Ahmad (Eds.), Phytoremediation for Green Energy (pp. 79–96). Dordrecht: Springer. crossref

Céccoli, G., Ramos, J. C., Ortega, L. I., Acosta, J. M., & Perreta, M. G. (2011). Salinity induced anatomical and morphological changes in Chloris gayana Kunth roots. Biocell, 35(1), 9–17. Retrieved from website

Emamverdian, A., Ding, Y., Xie, Y., & Sangari, S. (2018). Silicon mechanisms to ameliorate heavy metal stress in plants. BioMed Research International, 2018, 8492898. crossref

Farhana, S., Rashid, P., & Karmoker, J. L. (2014). Salinity induced anatomical changes in maize (Zea mays L. CV. BARI‐7). Dhaka University Journal of Biological Sciences, 23(1), 93-95. crossref

Gomes, M. P., de Sáe Melo Marques, T. C. L. L., de Oliveira Gonçalves Nogueira, M., de Castro, E. M., & Soares, Â. M. (2011). Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Scientia Agricola, 68(5), 566–573. crossref

Gul, S., Nawaz, M. F., Azeem, M., & Sabir, M. (2016). Interactive effects of salinity and heavy metal stress on eco-physiological responses of two maize (Zea mays L.) cultivars. FUUAST Journal of Biology, 6(1), 81-87. Retrieved from website

Hatje, V., Payne, T. E., Hill, D. M., McOrist, G., Birch, G. F., & Szymczak, R. (2003). Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environment International, 29(5), 619-629. crossref

Huang, Y.-Z., Wei, K., Yang, J., Dai, F., & Zhang, G.-P. (2007). Interaction of salinity and cadmium stresses on mineral nutrients, sodium, and cadmium accumulation in four barley genotypes. Journal of Zhejiang University SCIENCE B, 8, 476–485. crossref

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. crossref

Johnson, D. V., Al-Khayri, J. M., & Jain, S. M. (2013). Seedling date palms (Phoenix dactylifera L.) as genetic resources. Emirates Journal of Food and Agriculture, 25(11), 809–830. crossref

Kadkhodaie, A., Kelich, S., & Baghbani, A. (2012). Effects of salinity levels on heavy metals (Cd, Pb and Ni ) absorption by sunflower and sudangrass plants. Bulletin of Environment Pharmacology and Life Sciences, 1(12), 47-53. Retrieved from pdf

Kadukova, J., & Kalogerakis, N. (2007). Lead accumulation from non-saline and saline environment by Tamarix smyrnensis Bunge. European Journal of Soil Biology, 43(4), 216-223. crossref

Karjunita, N., Khumaida, N., & Ardie, S. W. (2019). Different root anatomical changes in salt-tolerant and salt-sensitive foxtail millet genotypes. AGRIVITA Journal of Agricultural Science, 41(1), 88–96. crossref

Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15(4), 523–530. Retrieved from website

Naema, J. D., Abass, M. H., & Al-Jabary, K. M. A. (2017). The effect of cadmium and lead treatments of some anatomical characteristics of date palm Phoenix dactylifera L. cv. Barhi leaves. Basrah Journal For Date Palm Research, 16(1), 55–74. Retrieved from website

Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1), 88–95. crossref

Ola, Elbar, H. A., Reham, Farag, E., Eisa, S. S., & Habib, S. A. (2012). Morpho-anatomical changes in salt stressed kallar grass (Leptochloa fusca L. Kunth). Research Journal of Agriculture and Biological Sciences, 8(2), 158–166. Retrieved from pdf

Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials, 325, 36–58. crossref

Singh, S., Srivastava, P. K., Kumar, D., Tripathi, D. K., Chauhan, D. K., & Prasad, S. M. (2015). Morpho-anatomical and biochemical adapting strategies of maize (Zea mays L.) seedlings against lead and chromium stresses. Biocatalysis and Agricultural Biotechnology, 4(3), 286–295. crossref

Tupan, C. I., & Azrianingsih, R. (2016). Accumulation and deposition of lead heavy metal in the tissues of roots, rhizomes and leaves of seagrass Thalassia hemprichii (Monocotyledoneae, Hydrocharitaceae). AACL Bioflux, 9(3), 580–589. Retrieved from pdf

Vollenweider, P., Cosio, C., Günthardt-Goerg, M. S., & Keller, C. (2006). Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Part II Microlocalization and cellular effects of cadmium. Environmental and Experimental Botany, 58(1–3), 25–40. crossref

Willey, R. L. (1971). Microtechniques: A laboratory guide. New York: Macmillan Pub. Co. Retrieved from website

Younis, A., Riaz, A., Ahmed, I., Siddique, M. I., Tariq, U., Hameed, M., & Nadeem, M. (2014). Anatomical changes induced by NaCl stress in root and stem of Gazania harlequin L. Agricultural Communications, 2(3), 8-14. Retrieved from pdf

Zarinkamar, F., Ghelich, S., & Soleimanpour, S. (2013). Toxic effects of pb on anatomy and hypericin content in Hypericum perforatum L. Bioremediation Journal, 17(1), 40–51. crossref


Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.