Radiation Use Efficiency of Maize (Zea mays L.) on Different Varieties and Intercropping with Mungbean in the Rainy Season

Patta Sija, Yogi Sugito, Agus Suryanto, Didik Hariyono

Abstract


The variety selection and intercropping system are closely related to canopy architecture which determines the capability of maize crops to intercept and absorb the intensity of solar radiation. The research to increase radiation use efficiency (RUE) of maize based on varietal selection and intercropping with mungbean related to canopy characteristics. The experiment was conducted during the rainy season, from September 2016 to January 2017, in Gowa Regency, South Sulawesi. A factorial randomized block experiment with three replicates was designed the fasilitate the combination of two factor. The first factor was three maize varieties, i.e. Bisi 18, Lamuru, and local variety and the second factors dealt with intercropping systems, i.e. intercropping of maize varity with one, two, three, and four lines of mungbean, and maize monoculture. The results showed that there were interactions between varieties and intercropping to RUE of maize. The RUE of all maize varieties intercropped with mungbean was higher compared to the maize monoculture. The RUE of Bisi 18 intercropped with mungbean was higher than Lamuru and local varieties with the values of 9.53%, 8.80%, and 6.43% respectively. Bisi 18 that has vertical leaf character were more efficient in utilizing solar radiation when intercropped with denser mungbean populations.


Keywords


Intercropping; Leaf area index; Maize varieties; Radiation use efficiency; Vertical leaf

Full Text:

PDF

References


Ahmad, A., & Tahir, M. (2017). Effect of different rates of zinc sulphate on hybrid maize grown alone and in combination with mungbean. Life Science Journal, 14(5), 42–48. Retrieved from http://www.lifesciencesite.com/lsj/life140517/07_32192lsj140517_42_48.pdf

Akmal, M., & Janssens, M. J. J. (2004). Productivity and light use efficiency of perennial ryegrass with contrasting water and nitrogen supplies. Field Crops Research, 88(2–3), 143–155. https://doi.org/10.1016/j.fcr.2003.12.004

Awal, M. A., Koshi, H., & Ikeda, T. (2006). Radiation interception and use by maize/peanut intercrop canopy. Agricultural and Forest Meteorology, 139(1–2), 74–83. https://doi.org/10.1016/j.agrformet.2006.06.001

Bavec, F., & Bavec, M. (2002). Effects of plant population on leaf area index, cob characteristics and grain yield of early maturing maize cultivars (FAO 100-400). European Journal of Agronomy, 16(2), 151–159. https://doi.org/10.1016/S1161-0301(01)00126-5

Bedoussac, L., & Justes, E. (2010). Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat-winter pea intercrop. Plant and Soil, 330, 37–54. https://doi.org/10.1007/s11104-010-0303-8

Campillo, C., Fortes, R., & del Henar Prieto, M. (2012). Solar radiation effect on crop production. In E. B. Babatunde (Ed.), Solar Radiation. InTech. https://doi.org/10.5772/34796

Ceotto, E., & Castelli, F. (2002). Radiation-use efficiency in flue-cured tobacco (Nicotiana tabacum L.): response to nitrogen supply, climatic variability and sink limitations. Field Crops Research, 74(2–3), 117–130. https://doi.org/10.1016/S0378-4290(01)00201-5

Cirilo, A. G., Dardanelli, J., Balzarini, M., Andrade, F. H., Cantarero, M., Luque, S., & Pedrol, H. M. (2009). Morpho-physiological traits associated with maize crop adaptations to environments differing in nitrogen availability. Field Crops Research, 113(2), 116–124. https://doi.org/10.1016/j.fcr.2009.04.011

Coll, L., Cerrudo, A., Rizzalli, R., Monzon, J. P., & Andrade, F. H. (2012). Capture and use of water and radiation in summer intercrops in the south-east Pampas of Argentina. Field Crops Research, 134, 105–113. https://doi.org/10.1016/j.fcr.2012.05.005

Dong, N., Tang, M.-M., Zhang, W.-P., Bao, X.-G., Wang, Y., Christie, P., & Li, L. (2018). Temporal differentiation of crop growth as one of the drivers of intercropping yield advantage. Scientific Reports, 8, 3110. https://doi.org/10.1038/s41598-018-21414-w

Duvick, D. N. (2005). Genetic progress in yield of United States maize (Zea mays L.). Maydica, 50, 193–202. Retrieved from http://www.ask-force.org/web/Yield/Duvick-Genetic-Progress-Yield-Maize-US-2005.pdf

Edwards, J. T., Purcell, L. C., & Vories, E. D. (2005). Light interception and yield potential of short-season maize (Zea mays L.) hybrids in the Midsouth. Agronomy Journal, 97(1), 225–234. Retrieved from https://acsess.onlinelibrary.wiley.com/doi/10.2134/agronj2005.0225a

Gao, Y., Duan, A., Qiu, X., Sun, J., Zhang, J., Liu, H., & Wang, H. (2010). Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agronomy Journal, 102(4), 1149–1157. https://doi.org/10.2134/agronj2009.0409

Gong, W., Ferdinand, U., Dang, K., Li, J., Chen, G., Luo, Y., Yang, P., & Feng, B. (2020). Boosting proso millet yield by altering canopy light distribution in proso millet/mung bean intercropping systems. The Crop Journal, 8, 365 – 377. https://doi.org/10.1016/j.cj.2019.09.009

Hammer, G. L., Dong, Z., McLean, G., Doherty, A., Messina, C., Schussler, J., … Cooper, M. (2009). Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Science, 49(1), 299–312. https://doi.org/10.2135/cropsci2008.03.0152

Karimian, K., Ghorbani, R., Koochaki, A.-R., & Asadi, G.-A. (2015). Investigating of radiation absorption and use efficiency in intercropping of wheat and canola. International Journal of Life Sciences, 9(6), 61–71. https://doi.org/10.3126/ijls.v9i6.12740

Kermah, M., Franke, A. C., Adjei-Nsiah, S., Ahiabor, B. D. K., Abaidoo, R. C., & Giller, K. E. (2017). Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crops Research, 213, 38–50. https://doi.org/10.1016/j.fcr.2017.07.008

Lee, E. A., & Tollenaar, M. (2007). Physiological basis of successful breeding strategies for maize grain yield. Crop Science, 47(S3), S-202-S-215. https://doi.org/10.2135/cropsci2007.04.0010IPBS

Lithourgidis, A. S., Dordas, C. A., Damalas, C. A., & Vlachostergios, D. N. (2011). Annual intercrops: An alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 5(4), 396–410. Retrieved from http://www.cropj.com/anastasios_5_4_2011_396_410.pdf

Long, S. P., Zhu, X. G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment, 29(3), 315–330. https://doi.org/10.1111/j.1365-3040.2005.01493.x

Maddonni, G. A., Cirilo, A. G., & Otegui, M. E. (2006). Row width and maize grain yield. Agronomy Journal, 98, 1532–1543. https://doi.org/10.2134/agronj2006.0038

Maddonni, G. A., Otegui, M. E., & Cirilo, A. G. (2001). Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Research, 71(3), 183–193. https://doi.org/10.1016/S0378-4290(01)00158-7

Maluleke, M. H., Addo-Bediako, A., & Ayisi, K. K. (2005). Influence of maize/lablab intercropping on lepidopterous stem borer infestation in maize. Journal of Economic Entomology, 98(2), 384–388. https://doi.org/10.1093/jee/98.2.384

Mansfield, B. D., & Mumm, R. H. (2014). Survey of plant density tolerance in U.S. maize germplasm. Crop Science, 54(1), 157–173. https://doi.org/10.2135/cropsci2013.04.0252

Matusso, J. M. M., Mugwe, J. N., & Mucheru-Muna, M. (2014). Effect of different maize (Zea mays L.) – soybean (Glycine max (L.) Merrill) intercropping patterns on yields, light interception and leaf area index in Embu West and Tigania East sub counties. Academic Research Journal of Agricultural Science and Research, 2(2), 6-21. Retrieved from https://www.academicresearchjournals.org/ARJASR/PDF/2014/April/Matusso%20et%20al.pdf

Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. The Journal of Applied Ecology, 9(3), 747–766. https://doi.org/10.2307/2401901

Monteith, J. L., & Unsworth, M. H. (2014). Principles of environmental physics: Plants, animals, and the atmosphere (4th ed.). Oxford, UK: Academic Press. https://doi.org/10.1016/C2010-0-66393-0

Moosavi, S., Seghatoleslami, M., & Moazeni, A. (2012). Effect of planting date and plant density on morphological traits, LAI and forage corn (Sc. 370) yield in second cultivation. International Research Journal of Applied and Basic Sciences, 3, 57-63. Retrieved from https://www.semanticscholar.org/paper/Effect-of-planting-date-and-plant-density-on-traits-Moosavi-Seghatoleslami/0662168912ca41b6850e11ae2e2a0cededafbacc

Morales-Ruiz, A., Loeza-Corte, J. M., Díaz-López, E., Morales-Rosales, E. J., Franco-Mora, O., Mariezcurrena-Berasaín, M. D., & Estrada-Campuzano, G. (2016). Efficiency on the use of radiation and corn yield under three densities of sowing. International Journal of Agronomy, 2016(6959708), 1–5. https://doi.org/10.1155/2016/6959708

Morales-Ruiz, A., Morales-Rosales, E. J., Franco-Mora, O., Mariezcurrena-Berasaín, D., Estrada-Campuzano, G., & Norman-Mondragón, T. H. (2014). Maize population density, light attenuation coefficient and yield. Revista Mexicana de Ciencias Agrícolas, 5(8), 1425–1431. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20143286970

Mullet, J., Morishige, D., McCormick, R., Truong, S., Hilley, J., McKinley, B., … Rooney, W. (2014). Energy sorghum-a genetic model for the design of C4 grass bioenergy crops. Journal of Experimental Botany, 65(13), 3479–3489. https://doi.org/10.1093/jxb/eru229

Nassary, E. K., Baijukya, F., & Ndakidemi, P. A. (2020). Productivity of intercropping with maize and common bean over five cropping seasons on smallholder farms of Tanzania. European Journal of Agronomy, 113, 125964. https://doi.org/10.1016/j.eja.2019.125964

Nassiri-Mahallati, M., Koocheki, A., Mondani, F., Feizi, H., & Amirmoradi, S. (2015). Determination of optimal strip width in strip intercropping of maize (Zea mays L.) and bean (Phaseolus vulgaris L.) in Northeast Iran. Journal of Cleaner Production, 106, 343–350. https://doi.org/10.1016/j.jclepro.2014.10.099

Polnaya, F., & Patty, J. E. (2012). Kajian pertumbuhan dan produksi varietas jagung lokal dan kacang hijau dalam sistem tumpangsari. Agrologia Jurnal Ilmu Budidaya Tanaman, 1(1), 42–50. https://doi.org/10.30598/a.v1i1.297

Rosati, A., Metcalf, S. G., & Lampinen, B. D. (2004). A simple method to estimate photosynthetic radiation use efficiency of canopies. Annals of Botany, 93(5), 567–574. https://doi.org/10.1093/aob/mch081

Sabaruddin, L., Kilowasid, L. M. H., & Syaf, H. (2013). Effect of “komba-komba” pruning compost and planting time of mungbean in intercropping with maize on yield and soil fauna. AGRIVITA Journal of Agricultural Science, 35(1), 13–21. https://doi.org/10.17503/agrivita-2012-35-1-p013-21

Septiadi, D., Nanlohy, P., Souissa, M., & Rumlawang, F. Y. (2009). Proyeksi potensi energi surya sebagai energi terbarukan (Studi wilayah Ambon dan sekitarnya). Jurnal Meteorologi Dan Geofisika, 10(1), 22–28. https://doi.org/10.31172/jmg.v10i1.30

Seran, T. H., & Brintha, I. (2010). Review on maize based intercropping. Journal of Agronomy, 9(3), 135–145. https://doi.org/10.3923/ja.2010.135.145

Setter, T. L., Flannigan, B. A., & Melkonian, J. (2001). Loss of kernel set due to water deficit and shade in maize: Carbohydrate supplies, abscisic acid, and cytokinins. Crop Science, 41(5), 1530–1540. https://doi.org/10.2135/cropsci2001.4151530x

Sinclair, T. R., & Muchow, R. C. (1999). Radiation use efficiency. Advances in Agronomy, 65, 215–265. https://doi.org/10.1016/S0065-2113(08)60914-1

Slattery, R. A., & Ort, D. R. (2015). Photosynthetic energy conversion efficiency: Setting a baseline for gauging future improvements in important food and biofuel crops. Plant Physiology, 168(2), 383–392. https://doi.org/10.1104/pp.15.00066

Song, Q., Zhang, G., & Zhu, X. G. (2013). Optimal crop canopy architecture to maximise canopy photosynthetic CO 2 uptake under elevated CO2-a theoretical study using a mechanistic model of canopy photosynthesis. Functional Plant Biology, 40, 109–124. https://doi.org/10.1071/FP12056

Suryanto, A., Guritno, B., Sugito, Y., & Koesmaryono, Y. (2005). Efisiensi konversi energi surya pada tanaman kentang (Solanum tuberosum). Jurnal Agromet Indonesia, 19(1), 39–48. https://doi.org/10.29244/j.agromet.19.1.39-48

Suryanto, A., Maghfoer, M. D., & Kartinaty, T. (2018). Radiation use efficiency on the different varieties and the number of seedlings of rice (Oryza sativa L.). AGRIVITA Journal of Agricultural Science, 40(3), 536–543. https://doi.org/10.17503/agrivita.v40i3.1851

Tian, F., Bradbury, P. J., Brown, P. J., Hung, H., Sun, Q., Flint-Garcia, S., … Buckler, E. S. (2011). Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 43, 159–162. https://doi.org/10.1038/ng.746

Tohidi, M., Nadery, A., Siadat, S., & Lak, S. (2012). Variables productivity of light interception in grain maize hybrids at various amount of nitrogen. World Applied Sciences Journal, 16(1), 86–93. Retrieved from https://www.idosi.org/wasj/wasj16(1)12/13.pdf

Truong, S. K., McCormick, R. F., Rooney, W. L., & Mullet, J. E. (2015). Harnessing genetic variation in leaf angle to increase productivity of sorghum bicolor. Genetics, 201(3), 1229–1238. https://doi.org/10.1534/genetics.115.178608

Tsubo, M., Walker, S., & Mukhala, E. (2001). Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. Field Crops Research, 71(1), 17–29. https://doi.org/10.1016/S0378-4290(01)00142-3

van Zanten, M., Pons, T. L., Janssen, J. A. M., Voesenek, L. A. C. J., & Peeters, A. J. M. (2010). On the relevance and control of leaf angle. Critical Reviews in Plant Sciences, 29(5), 300–316. https://doi.org/10.1080/07352689.2010.502086

Wang, Q., Sun, D., Hao, H., Zhao, X. , Hao, W., & Liu, Q. (2015). Photosynthetically active radiation determining yields for an intercrop of maize with cabbage, European Journal of Agronomy, 69, 32–40. https://doi.org/10.1016/j.eja.2015.05.004

Wang, Z., Zhao, X., Wu, P., He, J., Chen, X., Gao, Y., & Cao, X. (2015). Radiation interception and utilization by wheat/maize strip intercropping systems. Agricultural and Forest Meteorology, 204, 58–66. https://doi.org/10.1016/j.agrformet.2015.02.004

Worku, W., & Demisie, W. (2012). Growth, light interception and radiation use efficiency response of pigeon pea (Cajanus cajari) to planting density in Southern Ethiopia. Journal of Agronomy, 11(4), 85–93. https://doi.org/10.3923/ja.2012.85.93

Yulisma. (2011). Pertumbuhan dan hasil beberapa varietas jagung pada berbagai jarak tanam. Jurnal Penelitian Pertanian Tanaman Pangan, 30(3), 196–203. Retrieved from http://ejurnal.litbang.pertanian.go.id/index.php/jpptp/article/view/3026

Zhang, L., van der Werf, W., Bastiaans, L., Zhang, S., Li, B., & Spiertz, J. H. J. (2008). Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research, 107(1), 29–42. https://doi.org/10.1016/j.fcr.2007.12.014

Zhu, X. G., Long, S. P., & Ort, D. R. (2008). What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology, 19(2), 153–159. https://doi.org/10.1016/j.copbio.2008.02.004

Zhu, X. G., Long, S. P., & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61, 235–261. https://doi.org/10.1146/annurev-arplant-042809-112206




DOI: http://doi.org/10.17503/agrivita.v42i3.2498

Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.