Radiation Use Efficiency on Maize (Zea mays L.) on Different Varieties and Intercropping with Mungbean in the Rainy Season

Patta Sija, Yogi Sugito, Agus Suryanto, Didik Hariyono


Selection of varieties and intercropping system is closely related to canopy structure which determine the ability of maize plants to intercept and absorb solar radiation intensity. This research aimed to improve Radiation Use Efficiency (RUE) of maize by selecting plant canopies based on varieties and intercropping with mungbean. Research was conducted during rainy season, from September 2016 to January 2017, in Gowa Regency, South Sulawesi. Randomized Block Design Factorial with three replications was adopted to evaluate three maize varieties (Bisi-18, Lamuru, and Local) as the first factor, and intercropping system (two maize lines with one, two, three, and four lines of mungbean, sole maize) as the second factor. Results showed that there were interactions between varieties and intercropping to RUE of maize. The RUE of all maize varieties intercropped with mungbean was higher compared to sole maize. The RUE of Bisi-18 variety intercropped with mungbean was higher than the RUE of Lamuru and Local varieties with value of 9.53%, 8.80% and 6.43% respectively. Higher RUE of Bisi-18 variety shows that intercropping maize varieties that have vertical leaves with more dense mungbean population were more efficient in utilizing radiation. 


Intercropping , Leaf Area Index, Maize varieties, Radiation Use Efficiency, Vertical leaf

Full Text:



Ahmad, A., & Tahir, M. (2017). Effect of different rates of zinc sulphate on hybrid maize grown alone and in combination with mungbean. Life Science Journal, 14(5), 42-48. Retrieved from http://www.lifesciencesite.com/lsj/life140517/07_32192lsj140517_42_48.pdf

Akmal, M., & Janssens, M.J.J. (2004). Productivity and light use efficiency of perennial ryegrass with contrasting nitrogen supplies. Field Crops Research, 88, 143-155. https://doi.org/10.1016/j.fcr.2003.12.004

Awal, M.A., Koshi, H., & Ikeda, T. (2006). Radiation interception and use by maize/peanut intercrop canopy. Agricultural and Forest Meteorology, 139, 74–83. https://doi.org/10.1016/j.agrformet.2006.06.001

Babaji, B.A., Yahaya, R.A., Musa A. Mahadi, M.A., Jaliya, M.M., et al. (2014). Yield and yield attributes of extra-early maize (Zea mays L.) as affected by rates of NPK fertilizer succeeding chilli pepper (Capsicum frutescens) supplied with different rates sheep manure. AGRIVITA Journal of Agricultural Science, 36(1), 1-8. http://dx.doi.org/10.17503/Agrivita-2014-36-1-p001-008

Bavec, F., & Bavec, M. (2002). Effect of plant population on leaf area index, cob characteristics and grain yield of early maturing maize cultivars, European Journal of Agronomy, 16, 151-159. https://doi.org/10.1016/S1161-0301(01)00126-5

Bedoussac, L., & Justes, E. (2010). Dynamic analysis of competition and complementarily for light and N use to understand the yield and the protein content of a durum wheat-winter pea intercrop. Plant and Soil, 330(1-2), 37-54. Retrieved from https://oatao.univ-toulouse.fr/4078/1/Bedoussac_4078.pdf

Campillo, C., Fortes, R., & del Henar Prieto, M. (2012). Solar Radiation Effect on Crop Production. Solar Radiation. PE.B. Babatunde (Ed.), ISBN: 978-953-51-0384-4, InTech. Available from: http://www.intechopen.com/books/solar-radiation/solar-radiation-effect-on-crop-production

Cirilo, A.G., Dardanelli, J., Balzarini, M., Andrade, F.H., Cantarero, M., Luque, S., et al. (2009). Morpho-physiological traits associated with maize crop adaptations to environments differing in nitrogen availability. Field Crops Research, 113, 116-124. https://doi.org/10.1016/j.fcr.2009.04.011

Ceotto, E., & Castelli, F. (2002). Radiation-use efficiency in flue-cured tobacco (Nicotiana tabacum L.): response to nitrogen supply, climatic variability and sink limitations. Field Crops Research, 74, 117-130. https://doi.org/10.1016/S0378-4290(01)00201-5

Coll, L., Cerrudo, A., Rizzalli, R., Monzon, J.P., & Andrade, F.H. (2012). Capture and use of water and radiation in summer intercrops in the south-east Pampas of Argentina. Field Crops Research, 134, 105-113. https://doi.org/10.1016/j.fcr.2012.05.005

Duvick, D.N. (2005). Genetic progress in yield of United States maize (Zea mays L.). Maydica, 50, 193-202. Retrieved from http://www.ask-force.org/web/Yield/Duvick-Genetic-Progress-Yield-Maize-US-2005.pdf

Gambín, B.L., Borras, L., & Otegui, M.E. (2006). Source-sink relations and kernel weight differences in maize temperate hybrids. Field Crops Research, 95, 316-326. https://doi.org/10.1016/j.fcr.2005.04.002

Gao Y., Duan, A., Qiu, X., Sun. J., Zhang, J., Liu, H., & Wang, H. (2010). Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean. Agronomy Journal,102, 1149–1157. Retrieved from https://www.researchgate.net/publication/240783638_Distribution_and_Use_Efficiency_of_Photosynthetically_Active_Radiation_in_Strip_Intercropping_of_Maize_and_Soybean/link/02e7e52b0e1f54e6a2000000/download

Hammer, G.L., Dong, Z., McLean, G., Doherry, A., Messina, C., Schussler, J., Zinselmeir, C., Paszkiewicz, S, & Cooper, M. (2009). Can changes in canopy and /or root system architecture explain historical maize yield trends in the US Corn Belt? Crop Science, 49 (1), 299-312. https://doi.org/10.2135/cropsci2008.03.0152

Jeffery, T., Edwards, L., Purcell, C., & Vories, D. (2005). Light interception and yield potential of short-season maize (Zea mays L.) hybrids in the mid-south. Agronomy Journal, 97, 225-234. Retrieved from https://www.ars.usda.gov/ARSUserFiles/50701000/cswq-0165-edwards.pdf

Karimian, K., Ghorbani, G., Koocheki, A., & Asadi, G. (2015). Investigating of radiation absorption and use efficiency in intercropping of wheat and canola. International Journal of Life Sciences, 9(6), 61-71. https://doi.org/10.3126/ijls.v9i6.12740

Kermah, M., Franke, A.C., Adjei-Nsiah, S., Benjamin D.K. Ahiabor, B.D.K., Abaidoo, R.C, & Giller, K.E. (2017). Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crops Research 213, 38-50. https://doi.org/10.1016/j.fcr.2017.07.008

Lee, E.A., & Tollenaar, M. (2007). Physiological basis of successful breeding strategies for maize grain yield. Crop Science, 47(3), S202-S215. Retrieved from https://www.researchgate.net/publication/234384596_Physiological_Basis_of_Successful_Breeding_Strategies_for_Maize_Grain_Yield

Lithourgidis, A.S., Dordas, C.A., Damalas, C.A., & Vlachostergios, D.N. (2011). Annual intercrops: an alternative pathway for sustainable agriculture. AJCS, 5(4): 396-410. Retrieved from https://www.cropj.com/anastasios_5_4_2011_396_410.pdf

Long, S.P., Zhu, X.G., Naidu, S.L., & Ort, D.R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment, 29: 315–330. https://doi.org/10.1111/j.1365-3040.2005.01493.x

Maddonni, G.A., Otegui, M.E., & Cirilo, A.G., (2001). Plant population density, row spacing and hybrid effects on maize canopy architecture and light interception. Field Crops Research, 71, 183-193. Retrieved from https://www.academia.edu/29279692/Plant_population_density_row_spacing_and_hybrid_effects_on_maize_canopy_architecture_and_light_attenuation

Mahallati, M.N. , Koocheki, A., Mondani, F., Feizi, H., & Amirmoradi, S. (2015). Determination of optimal strip width in strip intercropping of maize (Zea mays L.) and bean (Phaseolus vulgaris L.) in Northeast Iran. Journal of Cleaner Production, 106, 343-350. https://doi.org/10.1016/j.jclepro.2014.10.099

Maluleke, M. H., Bediako, A. A., & Ayisi, K. K. (2005). Influence of maize-lablab intercropping on Lepidopterous stem borer infestation in maize. Journal of Economic Entomology, 98, 384-388. http://dx.doi.org/10.1603/0022-0493-98.2.384

Mansfield, B.D., & Mumm, R.H. (2014). Survey of plant density tolerance in US maize germplasm. Crop Science, 54, 157–173. Retrieved from https://dl.sciencesocieties.org/publications/cs/pdfs/54/1/157

Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9(3), 747–766. http://doi.org/10.2307/2401901

Monteith, J., & Unsworth, M. (2013). Principles of environmental physics: Plants, animals, and the atmosphere (4th ed.). Oxford, UK: Academic Press. http://doi.org/10.1016/C2010-0-66393-0

Morales-Ruiz, A., Loeza-Corte, J.M., Diaz-Lȯpez, E., Morales-Rosales, E.J., Franco-Mora, O., Maniezcurrena-Berasain, M.D., et al. (2016). Efficiency on the use of radiation and corn yield under three densities of sowing. International Journal of Agronomy, 2016, Article ID 6959708, 5 pages. http://dx.doi.org/10.1155/2016/6959708

Morales-Ruiz, A., Morales, R.E.J., Franco, M.O., Mariezcurrena, B.D., Estrada, C.E., Norman, M.T.H. (2014). Maize population density, light attenuation coefficient and performance. Revista Mexicana de Ciencias Agricolas, 8, 1425-1431. Retrieved from http://www.scielo.org.mx/pdf/remexca/v5nspe8/2007-0934-remexca-5-spe8-1425-en.pdf

Mullet, J., Morishige, D., McCormick, R., Truong, S., Hilley, J., et al. (2014). Energy sorghum: a genetic model for the design of C4 grass bioenergy crops. Journal of Experimental Botany, 65, 3479-3489. https://doi.org/10.1093/jxb/eru229

Novacek, M.J., Mason, S.C., Galusha, T.D., & Yaseen, M. (2013). Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agronomy Journal 105, 268-276. Retrieved from https://www.academia.edu/24002916/Twin_Rows_Minimally_Impact_Irrigated_Maize_Yield_Morphology_and_Lodging

Polnaya, F., & Patty, J.E. (2012). Kajian Pertumbuhan dan Produksi Varietas Jagung Lokal dan Kacang Hijau dalam Sistem Tumpangsari. Jurnal Agrologia, 1(1), 42-50.


Rosati, A., Metcalf, S. G., & Lampinen, B. D. (2004). A simple method to estimate photosynthetic radiation use efficiency of canopies. Annals of Botany, 93(5), 567–574. http://doi.org/10.1093/aob/mch081

Sabaruddin, L., Kilowasid, L.O.H., & Syaf, H. (2013). Effect of ”Komba-komba” pruning compost and planting time of mungbean in intercropping with maize on yield and soil fauna. AGRIVITA Journal of Agricultural Science, 35(1), 13-21. http://dx.doi.org/10.17503/Agrivita-2013-35-1-p013-021

Seran, T.H., & Brintha, I. (2010). Review on maize based intercropping. Journal of Agronomy, 9(3), 135-145. Retrieved from http://docsdrive.com/pdfs/ansinet/ja/2010/135-145.pdf

Septiadi, D., Nanlohy, P., Souissa, M., & Rumlawang, F. Y.(2009). Proyeksi potensi energi surya sebagaienergi terbarukan (Studi wilayah Ambon dansekitarnya). Jurnal Meteorologi Dan Geofisika,10(1), 22–28. Retrieved from http://puslitbang.bmkg.go.id/jmg/index.php/jmg/article/view/30

Setter, T.L., Flannigan, B.A., & Melkonian, J. (2001). Loss of kernel set due to water deficit and shade in maize: carbohydrate supplies, abscisic acid, and cytokinin. Crop Science, 41, 1530–1540. http://doi.org/10.2135/cropsci2001.4151530x

Slattery, R. A., & Ort, D. R. (2015). Photosynthetic energy conversion efficiency: Setting a baseline for gauging future improvements in important food and biofuel crops. Plant Physiology, 168(2), 383–392. http://doi.org/10.1104/pp.15.00066

Sinclair, T.R., & Muchow, R.C. (1999). Radiation use efficiency. Advances in Agronomy, 65, 215–265. https://doi.org/10.1016/S0065-2113(08)60914-1

Song, Q.F., Zhang, G.L., & Zhu, X.G. (2013). Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2: a theoretical study using a mechanistic model of canopy photosynthesis. Functional Plant Biology, 40, 109–124. http://www.publish.csiro.au/fp/pdf/FP12056

Suryanto, A., Guritno, B., Sugito, Y., & Koesmaryono, Y. (2005). Efisiensi konversi energi surya pada tanaman kentang (Solanum tuberosum L.) [Radiation Use Efficincy in Potato (Solanum tuberosum L.)]. Jurnal Agromet Indonesia, 19(1),39–48. Retrieved from http://journal.ipb.ac.id/index.php/agromet/article/view/3449

Suryanto, A., Maghfoer, M.D., & Kartinaty, T. (2018). Radiation use efficiency on the different varieties and the number of seedlings of rice (Oryza sativa L.). AGRIVITA Journal of Agricultural Science, 40(3), 536-543. http://doi.org/10.17503/agrivita.v40i3.1851

Tian, F., Bradbury, P.J., Brown, P.J., Hung, H., & Sunet, Q., et al. (2011). Genome-wide association study of leaf architecture inthe maize nested association mapping population. Nature Genetics, 43, 159–162. https://doi.org/10.1038/ng.746

Tohidi, M., Nadery, A., Siadat, S., & Lak, S. (2012). Variables productivity of light interception in grain maize hybrids at various amount of nitrogen. World Applied Sciences Journal, 16(1),86–93. Retrieved from https://pdfs.semanticscholar.org/1a61/8c4ccfd7d249f16a5 56d47bdcd9bb901251a.pdf

Truong, S.K., McCormick, R.F., Rooney, W.L., & Mullet, J.E. 2015. Harnessing Genetic Variation in Leaf Angle to Increase Productivity of Sorghum bicolor. Genetics, 201(3), 1229–1238. Retrieved from https://www.genetics.org/content/genetics/201/3/1229.full.pdf

Tsubo, M., Walker, S., & Mukhala, E. (2001). Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. Field Crops Research, 71, 17-29. https://doi.org/10.1016/S0378-4290(01)00142-3

van Zanten, M., Pons, T.L., Janssen, J.A.M., Voesenek, L.A.C.J., & Peeters, A.J.M. (2010). On the relevance and control of leaf angle. Critical Reviews in Plant Sciences, 29, 300–316. https://doi.org/10.1080/07352689.2010.502086

Wang, Z., Zhao, X., Wu, P., He, J., Chen, X., Gao, Y., & Cao, X. (2015). Radiation interception and utilization by wheat/maize strip intercropping systems. Agricultural and Forest Meteorology, 204, 58–66. https://doi.org/10.1016/j.agrformet.2015.02.004

Worku, W., & Demisie, W. (2012). Growth, light interception and radiation use efficiency response of pigeon pea (Cajanus cajan) to planting density in Southern Ethiopia. Journal of Agronomy, 11(4), 85-93. Retrieved from http://docsdrive.com/pdfs/ansinet/ja/2012/85-93.pdf

Yulisma. (2011). Pertumbuhan dan Hasil Beberapa Varietas Jagung pada Berbagai Jarak Tanam. Jurnal Penelitian Pertanian Tanaman Pangan, 30(3), 196-203. Retrieved from http://ejurnal.litbang.pertanian.go.id/index.php/jpptp/article/view/3026

Zhang, L., van der Werf, W., Bastiaans, L., Zhang, S., Li, B., & Spiertz, J.H.J. (2008). Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Research, 107(1), 29-42. https://doi.org/10.1016/j.fcr.2007.12.014

Zhu, X.-G., Long, S. P., & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61, 235–261. http://doi.org/10.1146/annurev-arplant-042809-112206

Zhu, X. G., Long, S. P., & Ort, D. R. (2008). What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology, 19(2), 153–159. http://doi.org/10.1016/j.copbio.2008.02.004

DOI: http://doi.org/10.17503/agrivita.v42i3.2498

Copyright (c) 2020 Patta Sija, Yogi Sugito, Agus Suryanto, Didik Hariyono

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.