Turning Volcanic Ash into Fertile Soil: Farmers’ Options in Coffee Agroforestry After the 2014 Mount Kelud Eruption

Rizki Maulana Ishaq, Danny Dwi Saputra, Rika Ratna Sari, Didik Suprayogo, Widianto Widianto, Cahyo Prayogo, Kurniatun Hairiah

Abstract

khk
Post eruption land reclamation consists of hoeing, mixing volcanic ash with soil, adding external organic and/or in-organic fertilizers and making infiltration-pits (‘rorak’). This study, after the 2014 eruption of Kelud volcano, aimed to evaluate: (a) soil physico-chemical fertility post eruption, (b) impact of organic inputs interacting with ash in infiltration pits on soil C and N underneath (1st experiment), (c) biomass loss (decomposition) of local biomass (Trema orientalis and Parasponia andersonii) in a coffee agroforestry system (2nd experiment). Measurements in the ash-affected (+Ash) Tulungrejo-village (Ngantang-Malang district) were contrasted with an area without recent ash deposits (-Ash) in Krisik (Gandusari-Wlingi district). The 1st experiment (-Ash site) treatments did not lead to statistically significant influences on soil conditions just below the infiltration pits during 12 weeks of monitoring. The 2nd experiment quantified rate of biomass loss from litterbags. In +Ash location, litter half-life time (t50) was 19.5 weeks for coffee or Parasponia as single biomass source to 24 weeks for Coffee+Sengon+Durian. In -Ash location decomposition was slower, with t50 of 24 weeks for Parasponia to 27 weeks for Coffee+Sengon+Durian biomass. Concentrations of soil NH4 and NO3 below the litterbags peaked between 4 to 8 weeks, with nitrification lagging behind on ammonium release.

Keywords


Coffee-based agroforestry; Decomposition; Half-life decomposition; Parasponia andersonii; Trema orientalis

Full Text:

PDF

References


Achmad, S. R., & Hadi, H. (2015). Identifikasi sifat kimia abu vulkanik dan upaya pemulihan tanaman karet terdampak letusan Gunung Kelud (Studi Kebun Ngrangkah Pawa, Jawa Timur). Warta Perkaretan, 34(1), 19–30. https://doi.org/10.22302/ppk.wp.v34i1.60

Akter, M., Miah, M. A., Hassan, M. M., Mobin, M. N., & Baten, M. A. (2016). Textural influence on surface and subsurface soil temperatures under various conditions. Journal of Environmental Science and Natural Resources, 8(2), 147–151. https://doi.org/10.3329/jesnr.v8i2.26882

Anderson, J. M., & Ingram, J. S. I. (1993). Tropical soil biology and fertility: A handbook of methods (2nd ed.). Wallingford, UK: CAB International.

BPS Kabupaten Malang. (2016). Data klimatologi pos Karangploso. Pertanian dan Pertambangan. Badan Pusat Statistik Kabupaten Malang. Retrieved from https://malangkab.bps.go.id/subject/60/kehutanan.html#subjekViewTab5

BPS Kabupaten Blitar. (2015). Rata-rata hari hujan dan curah hujan bulan Januari – Desember, 2014. Badan Pusat Statistik Kabupaten Blitar. Retrieved from https://blitarkab.bps.go.id/statictable/2015/02/25/352/rata-rata-hari-hujan-dan-curah-hujan-bulan-januari-desember-2014.html

Becking, J. H. (1979). Root-nodule symbiosis between Rhizobium and Parasponia (Ulmaceae). Plant and Soil, 51, 289–296. https://doi.org/10.1007/BF02232892

Cadisch, G., & Giller, K. E. (1997). Driven by nature: Plant litter quality and decomposition. CAB International. Retrieved from https://books.google.co.id/books/about/Driven_by_Nature.html?id=snzwAAAAMAAJ&redir_esc=y

Cornforth, I. S., & Davis, J. B. (1968). Nitrogen transformation in tropical soils. 1. Mineralization of nitrogen-rich organic materials added to soil. Tropical Agriculture (Trinidad), 45, 211-221.

Delmelle, P., Stix, J., Baxter, P., Garcia-Alvarez, J., & Barquero, J. (2002). Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua. Bulletin of Volcanology, 64, 423–434. https://doi.org/10.1007/s00445-002-0221-6

Hairiah, K., Sulistyani, H., Suprayogo, D., Widianto, Purnomosidhi, P., Widodo, R. H., & Van Noordwijk, M. (2006). Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. Forest Ecology and Management, 224(1–2), 45–57. https://doi.org/10.1016/j.foreco.2005.12.007

Hairiah, K., Suprayogo, D., Apriyanti, M., Wahyudi, Y. W., & Qhomariyah, N. (2016). Penghijauan di DAS Kalikonto: Kesuburan tanah di sistem agroforestri pasca erupsi Gunung Kelud. In E. Rachman, D. Kusumawardhana, T. S. Widyaningsih, & D. P. Kuswantoro (Eds.), Seminar Nasional Agroforestry 2015: Inovasi Agroforestri Mendukung Kemandirian Bangsa (pp. 364–371). Bandung, ID: Balai Penelitian dan Pengembangan Teknologi Agroforestry bekerjasama dengan Fakultas Pertanian Universitas Padjadjaran, World Agroforestry Centre (ICRAF), Fakultas Kehutanan Universitas Winaya Mukti, Masyarakat Agroforestri Indonesia, dan Perum Perhutani. Retrieved from http://balitek-agroforestry.org/btpaciadmin/content/prosiding_Fdownload/Komisi_B_Semnas_AF_Unpad_2015.pdf.pdf

IFRC. (2014). Final report Indonesia: Volcanic eruption – Mt. Kelud. International Federation of Red Cross and Red Crescent Societies. Retrieved from https://reliefweb.int/sites/reliefweb.int/files/resources/MDRID009drefFR.pdf

Kerfahi, D., Tateno, R., Takahashi, K., Cho, H. J., Kim, H., & Adams, J. M. (2017). Development of soil bacterial communities in volcanic ash microcosms in a range of climates. Microbial Ecology, 73(4), 775–790. https://doi.org/10.1007/s00248-016-0873-y

Neild, J., O’Flaherty, P., Hedley, P., Underwood, R., Johnston, D., Christenson, B., & Brown, P. (1998). Impact of a volcanic eruption on agriculture and forestry in New Zealand. MAF Policy Technical Paper 99/2. Wellington: Ministry of Agricullture and Forestry. Retrieved from https://www.mpi.govt.nz/dmsdocument/138/direct

Nwankwo, C., & Ogagarue, D. (2012). An investigation of temperature variation at soil depths in parts of Southern Nigeria. American Journal of Environmental Engineering, 2(5), 142–147. https://doi.org/10.5923/j.ajee.20120205.05

Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44(2), 322–331. https://doi.org/10.2307/1932179

Op den Camp, R. H. M., Polone, E., Fedorova, E., Roelofsen, W., Squartini, A., Op den Camp, H. J. M., … Geurts, R. (2012). Nonlegume Parasponia andersonii deploys a broad rhizobium host range strategy resulting in largely variable symbiotic effectiveness. Molecular Plant-Microbe Interactions, 25(7), 954–963. https://doi.org/10.1094/MPMI-11-11-0304

Palm, C. A., & Sanchez, P. A. (1991). Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. Soil Biology and Biochemistry, 23(1), 83–88. https://doi.org/10.1016/0038-0717(91)90166-H

Rachmawati, S., Yulistyarini, T., & Hairiah, K. (2019). Decomposition of tree litter: Interaction between inherent quality and environment. Biodiversitas, 20(5), 1946–1952. https://doi.org/10.13057/biodiv/d200522

Rahayu, Ariyanto, D. P., Komariah, Hartati, S., Syamsiyah, J., & Dewi, W. S. (2014). Dampak erupsi Gunung Merapi terhadap lahan dan upaya-upaya pemulihannya. Caraka Tani: Journal of Sustainable Agriculture, 29(1), 61–72. https://doi.org/10.20961/carakatani.v29i1.13320

Styger, E., Fernandes, E. C. M., Rakotondramasy, H. M., & Rajaobelinirina, E. (2009). Degrading uplands in the rainforest region of Madagascar: Fallow biomass, nutrient stocks, and soil nutrient availability. Agroforestry Systems, 77, 107. https://doi.org/10.1007/s10457-009-9225-y

Van Ranst, E., Utami, S. R., & Shamshuddin, J. (2002). Andisols on volcanic ash from Java Island, Indonesia: Physico-chemical properties and classification. Soil Science, 167(1), 68–79. https://doi.org/10.1097/00010694-200201000-00007

Veen, G. F. (Ciska), Sundqvist, M. K., & Wardle, D. A. (2015). Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. Functional Ecology, 29(7), 981–991. https://doi.org/10.1111/1365-2435.12421

Young, A. (1989). Agroforestry for soil conservation. Wallingford, UK: CAB International & International Council fo Research in Agroforestry. https://doi.org/10.1016/0308-521x(91)90121-p




DOI: http://doi.org/10.17503/agrivita.v42i1.2494

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.