Turning Volcanic Ash into Fertile Soil: Farmers’ Options in Coffee Agroforestry After the 2014 Mount Kelud Eruption
Abstract
Keywords
Full Text:
PDFReferences
Achmad, S. R., & Hadi, H. (2015). Identifikasi sifat kimia abu vulkanik dan upaya pemulihan tanaman karet terdampak letusan Gunung Kelud (Studi Kebun Ngrangkah Pawa, Jawa Timur). Warta Perkaretan, 34(1), 19–30. DOI
Akter, M., Miah, M. A., Hassan, M. M., Mobin, M. N., & Baten, M. A. (2016). Textural influence on surface and subsurface soil temperatures under various conditions. Journal of Environmental Science and Natural Resources, 8(2), 147–151. DOI
Anderson, J. M., & Ingram, J. S. I. (1993). Tropical soil biology and fertility: A handbook of methods (2nd ed.). Wallingford, UK: CAB International.
BPS Kabupaten Malang. (2016). Data klimatologi pos Karangploso. Pertanian dan Pertambangan. Badan Pusat Statistik Kabupaten Malang. Retrieved from website
BPS Kabupaten Blitar. (2015). Rata-rata hari hujan dan curah hujan bulan Januari – Desember, 2014. Badan Pusat Statistik Kabupaten Blitar. Retrieved from website
Becking, J. H. (1979). Root-nodule symbiosis between Rhizobium and Parasponia (Ulmaceae). Plant and Soil, 51, 289–296. DOI
Cadisch, G., & Giller, K. E. (1997). Driven by nature: Plant litter quality and decomposition. CAB International. Retrieved from website
Cornforth, I. S., & Davis, J. B. (1968). Nitrogen transformation in tropical soils. 1. Mineralization of nitrogen-rich organic materials added to soil. Tropical Agriculture (Trinidad), 45, 211-221.
Delmelle, P., Stix, J., Baxter, P., Garcia-Alvarez, J., & Barquero, J. (2002). Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua. Bulletin of Volcanology, 64, 423–434. DOI
Hairiah, K., Sulistyani, H., Suprayogo, D., Widianto, Purnomosidhi, P., Widodo, R. H., & Van Noordwijk, M. (2006). Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. Forest Ecology and Management, 224(1–2), 45–57. DOI
Hairiah, K., Suprayogo, D., Apriyanti, M., Wahyudi, Y. W., & Qhomariyah, N. (2016). Penghijauan di DAS Kalikonto: Kesuburan tanah di sistem agroforestri pasca erupsi Gunung Kelud. In E. Rachman, D. Kusumawardhana, T. S. Widyaningsih, & D. P. Kuswantoro (Eds.), Seminar Nasional Agroforestry 2015: Inovasi Agroforestri Mendukung Kemandirian Bangsa (pp. 364–371). Bandung, ID: Balai Penelitian dan Pengembangan Teknologi Agroforestry bekerjasama dengan Fakultas Pertanian Universitas Padjadjaran, World Agroforestry Centre (ICRAF), Fakultas Kehutanan Universitas Winaya Mukti, Masyarakat Agroforestri Indonesia, dan Perum Perhutani. Retrieved from PDF
IFRC. (2014). Final report Indonesia: Volcanic eruption – Mt. Kelud. International Federation of Red Cross and Red Crescent Societies. Retrieved from PDF
Kerfahi, D., Tateno, R., Takahashi, K., Cho, H. J., Kim, H., & Adams, J. M. (2017). Development of soil bacterial communities in volcanic ash microcosms in a range of climates. Microbial Ecology, 73(4), 775–790. DOI
Neild, J., O’Flaherty, P., Hedley, P., Underwood, R., Johnston, D., Christenson, B., & Brown, P. (1998). Impact of a volcanic eruption on agriculture and forestry in New Zealand. MAF Policy Technical Paper 99/2. Wellington: Ministry of Agricullture and Forestry. Retrieved from website
Nwankwo, C., & Ogagarue, D. (2012). An investigation of temperature variation at soil depths in parts of Southern Nigeria. American Journal of Environmental Engineering, 2(5), 142–147. DOI
Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44(2), 322–331. DOI
Op den Camp, R. H. M., Polone, E., Fedorova, E., Roelofsen, W., Squartini, A., Op den Camp, H. J. M., … Geurts, R. (2012). Nonlegume Parasponia andersonii deploys a broad rhizobium host range strategy resulting in largely variable symbiotic effectiveness. Molecular Plant-Microbe Interactions, 25(7), 954–963. DOI
Palm, C. A., & Sanchez, P. A. (1991). Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. Soil Biology and Biochemistry, 23(1), 83–88. DOI
Rachmawati, S., Yulistyarini, T., & Hairiah, K. (2019). Decomposition of tree litter: Interaction between inherent quality and environment. Biodiversitas, 20(5), 1946–1952. DOI
Rahayu, Ariyanto, D. P., Komariah, Hartati, S., Syamsiyah, J., & Dewi, W. S. (2014). Dampak erupsi Gunung Merapi terhadap lahan dan upaya-upaya pemulihannya. Caraka Tani: Journal of Sustainable Agriculture, 29(1), 61–72. DOI
Styger, E., Fernandes, E. C. M., Rakotondramasy, H. M., & Rajaobelinirina, E. (2009). Degrading uplands in the rainforest region of Madagascar: Fallow biomass, nutrient stocks, and soil nutrient availability. Agroforestry Systems, 77, 107. DOI
Van Ranst, E., Utami, S. R., & Shamshuddin, J. (2002). Andisols on volcanic ash from Java Island, Indonesia: Physico-chemical properties and classification. Soil Science, 167(1), 68–79. DOI
Veen, G. F. (Ciska), Sundqvist, M. K., & Wardle, D. A. (2015). Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. Functional Ecology, 29(7), 981–991. DOI
Young, A. (1989). Agroforestry for soil conservation. Wallingford, UK: CAB International & International Council fo Research in Agroforestry. DOI
DOI: http://doi.org/10.17503/agrivita.v42i1.2494
Copyright (c) 2020 UNIVERSITAS BRAWIJAYA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.