Antifungal Activities of the Combination of Ulin Wood Liquid Smoke and Hiyung Cayenne Pepper Root Endophytic Fungi Against Colletothricum capsici

Witiyasti Imaningsih, Mariana Mariana, Ahmad Budi Junaedi, Rasyidah Rasyidah

Abstract


Chili farming faces several constraints, one of which is the pathogenic fungus Colletotrichum capsici. To overcome it can be used indigenous endophytic fungus and lliquid smoke of Ulin (Eusideroxylon zwageri Teijsm. & Binn.) wood which has the potential as antimicrobial can be used. This research aimed to quantify and measure the effectiveness of an antimicrobial liquid smoke, endophytic filtrate, and the combination to suppress C. capsici growth. Subsequently, the research was conducted to apply the liquid smoke, endophytic fungi, and the two combinations of treatments on the growth of C. capsici. Thus, the results of this research showed that liquid smoke with a concentration of 0.085-1.75% can inhibit 3.56-62.17% in range. Meanwhile, the endophytic fungi filtrate, of 2% concentration can inhibit 91.69% C. capsici. Two of the combination liquid smoke in a concentration of 0.68%, 1.36% and the endophytic fungi filtrate in 2% have a demonstrated to inhibit the growth of C. capsici with the highest inhibition into 88.08%. Based on the analysis results, liquid smoke, endophytic fungi filtrate, and a combination of both showed significantly different inhibitory effects between treatments. This indicates that all those three treatments have antimicrobial potential. 


Keywords


Endophytic fungi; Hiyung cayenne pepper; Inhibitory effect; Ulin wood

Full Text:

PDF

References


Aisyah, I., Sinaga, M. S., Nawangsih, A. A., Giyanto, & Pari, G. (2018). Utilization of liquid smoke to suppress blood diseases on bananas and its effects on the plant growth. AGRIVITA Journal of Agricultural Science, 40(3), 453–460. crossref

Araújo, W. L., Marcon, J., Maccheroni Jr, W., van Elsas, J. D., van Vuurde, J. W. L., & Azevedo, J. L. (2002). Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology, 68(10), 4906–4914. crossref

Ashry, N. A., & Mohamed, H. I. (2012). Impact of secondary metabolites and related enzymes in flax resistance and/or susceptibility to powdery mildew. African Journal of Biotechnology, 11(5), 1073–1077. Retrieved from website

Balai Penelitian dan Pengembangan Pertanian. (2018). Cabai Hiyung, SDG Lokal Kalimantan Selatan. Retrieved from website

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. crossref

Barnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi (4th ed.). St. Paul. USA: American Phytopathological Society (APS Press). Retrieved from pdf

Caires, N. P., Pinho, D. B., Souza, J., Silva, M. A., Lisboa, D. O., Pereira, O. L., & Furtado, G. Q. (2014). First report of anthracnose on pepper fruit caused by Colletotrichum scovillei in Brazil. Plant Disease, 98(10), 1437. crossref

De la Cruz-Quiroz, R., Roussos, S., Rodríguez-Herrera, R., Hernandez-Castillo, D., & Aguilar, C. N. (2018). Growth inhibition of Colletotrichum gloeosporioides and Phytophthora capsici by native Mexican Trichoderma strains. Karbala International Journal of Modern Science, 4(2), 237–243. crossref

de Souza, A. R. C., Baldoni, D. B., Lima, J., Porto, V., Marcuz, C., Machado, C., … Mazutti, M. A. (2017). Selection, isolation, and identification of fungi for bioherbicide production. Brazilian Journal of Microbiology, 48(1), 101–108. crossref

Frimpong, G. K., Adekunle, A. A., Ogundipe, O. T., Solanki, M. K., Sadhasivam, S., & Sionov, E. (2019). Identification and toxigenic potential of fungi isolated from capsicum peppers. Microorganisms, 7(9), 1–10. crossref

Gao, F., Dai, C., & Liu, X. (2010). Mechanisms of fungal endophytes in plant protection against pathogens. African Journal of Microbiology Research, 4(13), 1346–1351. Retrieved from pdf

Gerardo-Lugo, S. S., Tovar-Pedraza, J. M., Maharachchikumbura, S. S. N., ApodacaSánchez, M. A., Correia, K. C., SaucedaAcosta, C. P., … Beltrán-Peña, H. (2020). Characterization of Neopestalotiopsis species associated with mango grey leaf spot disease in Sinaloa, Mexico. Pathogens, 9(10), 788. crossref

Gunatilaka, A. A. L. (2006). Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence. Journal of Natural Products, 69(3), 509–526. crossref

Hassan, R. A., Sand, M. I., & El-Kadi, S. M. (2012). Effect of some organic acids on fungal growth and their toxins production. Journal of Agricultural Chemistry and Biotechnology, 3(9), 391–397. crossref

Imaningsih, W., Kadarsah, A., & Rusmannurrachmad, R. D. T. (2019). The capability of consortium phosphate solubilizing bacteria and IAA producing fungi on promoting elephant grass growth. Jurnal Biodjati, 4(1), 138–148. crossref

Islam, A. H. M. S., Schreinemachers, P., & Kumar, S. (2020). Farmers’ knowledge, perceptions and management of chili pepper anthracnose disease in Bangladesh. Crop Protection, 133, 105139. crossref

Junaidi, A. B., Apriyani, H., Abdullah, & Santoso, U. T. (2019). Fraksinasi dan karakterisasi asap cair dari kayu ulin (Eusideroxylon zwageri Teijsm. & Binn.) sebagai pelarut kitosan. Jurnal Riset Industri Hasil Hutan, 11(2), 53–64. crossref

Kikot, G. E., Hours, R. A., & Alconada, T. M. (2009). Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: A review. Journal of Basic Microbiology, 49(3), 231–241. crossref

Köhl, J., Postma, J., Nicot, P., Ruocco, M., & Blum, B. (2011). Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biological Control, 57(1), 1–12. crossref

Konaté, K., Hilou, A., Mavoungou, J. F., Lepengué, A. N., Souza, A., Barro, N., … Nacoulma, O. G. (2012). Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains. Annals of Clinical Microbiology and Antimicrobials, 11, 5. crossref

Kunova, A., Bonaldi, M., Saracchi, M., Pizzatti, C., Chen, X., & Cortesi, P. (2016). Selection of Streptomyces against soil borne fungal pathogens by a standardized dual culture assay and evaluation of their effects on seed germination and plant growth. BMC Microbiology, 16(1), 272. crossref

Lee, S. H., H’ng, P. S., Chow, M. J., Sajap, A. S., Tey, B. T., Salmiah, U., & Sun, Y. L. (2011). Effectiveness of pyroligneous acids from vapour released in charcoal industry against biodegradable agent under laboratory condition. Journal of Applied Sciences, 11(24), 3848–3853. crossref

Maheswari, S., & Rajagopal, K. (2013). Biodiversity of endophytic fungi in Kigelia pinnata during two different seasons. Current Science, 104(4), 515–518. Retrieved from website

Marques, J. P. R., Soares, M. K. M., & Appezzato-DaGloria, B. (2013). New staining technique for fungal-infected plant tissues. Turkish Journal of Botany, 37, 1–4. crossref

Nami Kartal, S., Terzi, E., Kose, C., Hofmeyr, J., & Imamura, Y. (2011). Efficacy of tar oil recovered during slow pyrolysis of macadamia nut shells. International Biodeterioration and Biodegradation, 65(2), 369–373. crossref

Okutucu, C., Duman, G., Ucar, S., Yasa, I., & Yanik, J. (2011). Production of fungicidal oil and activated carbon from pistachio shell. Journal of Analytical and Applied Pyrolysis, 91(1), 140–146. crossref

Pramudyani, L., Sabran, M., & Noor, A. (2019). Agronomic performance and nutrition content of hiyung as local variety of cayenne pepper (Capsicum frutescens) at dry land and swamp land of South Kalimantan Province. Buletin Plasma Nutfah, 25(1), 43-52. crossref

Qiao, W., Ling, F., Yu, L., Huang, Y., & Wang, T. (2017). Enhancing taxol production in a novel endophytic fungus, Aspergillus aculeatinus Tax-6, isolated from Taxus chinensis var. mairei. Fungal Biology, 121(12), 1037–1044. crossref

Rosana, Y., Matsuzawa, T., Gonoi, T., & Karuniawati, A. (2014). Modified slide culture method for faster and easier identification of dermatophytes. Microbiology Indonesia, 8(3), 7. crossref

Seifert, K. A., & Gams, W. (2011). The genera of Hyphomycetes - 2011 update. Persoonia: Molecular Phylogeny and Evolution of Fungi, 27, 119–129. crossref

Selim, K., El-Beih, A., AbdEl-Rahman, T., & El-Diwany, A. (2012). Biology of endophytic fungi. Current Research in Environmental & Applied Mycology, 2(1), 31–82. crossref

Septiana, E., Sukarno, N., Sukarno, & Simanjuntak, P. (2017). Endophytic fungi associated with turmeric (Curcuma longa L.) can inhibit histamine-forming bacteria in fish. HAYATI Journal of Biosciences, 24(1), 46–52. crossref

Sieber, T. N., & Grünig, C. R. (2006). Biodiversity of fungal root-endophyte communities and populations, in particular of the dark septate endophyte Phialocephala fortinii s. l. In B. J. E. Schulz, C. J. C. Boyle, & T. N. Sieber (Eds.), Microbial Root Endophytes (pp. 107–132). Berlin, Heidelberg: Springer. crossref

Soesanto, L., Hartono, A. R. R., Mugiastuti, E., & Widarta, H. (2020). Seed-borne pathogenic fungi on some soybean varieties. Biodiversitas, 21(9), 4010–4015. crossref

Stone, J. K., Polishook, J. D., & White Jr, J. F. (2004). Endophytic fungi. In M. Foster & G. Bills (Eds.), Biodiversity of Fungi: Inventory and Monitoring Methods (1st ed., pp. 241–270). Elsevier Academic Press. crossref

Suresh, G., Pakdel, H., Rouissi, T., Brar, S. K., Fliss, I., & Roy, C. (2019). In vitro evaluation of antimicrobial efficacy of pyroligneous acid from softwood mixture. Biotechnology Research and Innovation, 3(1), 47–53. crossref

Tomah, A. A., Abd Alamer, I. S., Li, B., & Zhang, J. Z. (2020). A new species of Trichoderma and gliotoxin role: A new observation in enhancing biocontrol potential of T. virens against Phytophthora capsici on chili pepper. Biological Control, 145, 104261. crossref

Underwood, W., & Somerville, S. C. (2008). Focal accumulation of defences at sites of fungal pathogen attack. Journal of Experimental Botany, 59(13), 3501–3508. crossref

Venkateswarulu, N., Shameer, S., Bramhachari, P. V., Basha, S. K. T., Nagaraju, C., & Vijaya, T. (2018). Isolation and characterization of plumbagin (5- hydroxyl- 2- methylnaptalene-1,4-dione) producing endophytic fungi Cladosporium delicatulum from endemic medicinal plants: Isolation and characterization of plumbagin producing endophytic fungi from endemic medicinal plants. Biotechnology Reports, 20, e00282. crossref




DOI: http://doi.org/10.17503/agrivita.v1i1.2458

Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.