Comparison of Metabolomics Expression in The Root and Leaf of Resistance and Susceptible Tomato against Root-Knot Nematode
Abstract
The resistant tomato against nematode produces various biochemical compounds associated with the defense mechanisms for nematode attack. These compounds allegedly expressed in all cells not only in the infected area. These metabolites are useful for plant development program to point out the candidate traits based on specific metabolites. This study aimed to compare expression of metabolomics as defense mechanism in root and leaf of the plant. Four cultivars consisted of the resistant [GM2 and F1 (a cross GM2 and Hawaii 7996)] and susceptible (Gondol Putih and Gondol Hijau) were used as plant materials. Fifty mg of freeze-dried of root and leaf were taken for assessing 1H-NMR (Nuclear Magnetic Resonance) for metabolomic analysis. Tomato roots resulted in 16 metabolites, while in the leaf detected 15, including amino acid, sugar, and aromatic compounds. Both root and leaf showed the same metabolites that play an important role in nematode-resistant mechanism, these metabolites were α- and β-glucose, and caffeic acid. These compounds had the same concentration within the root and leaf. It is implied that the metabolites associated with defense mechanism of tomato plants against nematode not only expressed locally in the infected area but also produced by not infected tissues throughout the plant.
Keywords
Full Text:
PDFReferences
Afifah, E. N. (2018). Analisis ketahanan empat kultivar tomat (Solanum lycopersicum L.) terhadap nematoda puru akar (Meloidogyne incognita) dengan pendekatan metabolomik (Thesis). Universitas Gadjah Mada. Retrieved from website
Afifah, E. N., Murti, R. H., & Nuringtyas, T. R. (2019). Metabolomics approach for the analysis of resistance of four tomato genotypes (Solanum lycopersicum L.) to root-knot nematodes (Meloidogyne incognita). Open Life Sciences, 14(1), 141–149. crossref
Allwood, J. W., Ellis, D. I., & Goodacre, R. (2008). Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiologia Plantarum, 132(2), 117–135. crossref
Eloh, K., Sasanelli, N., Maxia, A., & Caboni, P. (2016). Untargeted metabolomics of tomato plants after root-knot nematode infestation. Journal of Agricultural and Food Chemistry, 64(29), 5963–5968. crossref
Escudero, N., Marhuenda-Egea, F. C., Ibanco-Cañete, R., Zavala-Gonzalez, E. A., & Lopez-Llorca, L. V. (2014). A metabolomic approach to study the rhizodeposition in the tritrophic interaction: Tomato, Pochonia chlamydosporia and Meloidogyne javanica. Metabolomics, 10, 788–804. crossref
Fernandez, O., Urrutia, M., Bernillon, S., Giauffret, C., Tardieu, F., Le Gouis, J., … Gibon, Y. (2016). Fortune telling: Metabolic markers of plant performance. Metabolomics, 12(10), 158. crossref
Hu, C., Zhao, W., Fan, J., Li, Z., Yang, R., Zhao, F., … Wang, S. (2015). Protective enzymes and genes related to the JA pathway are involved in the response to root-knot nematodes at high soil temperatures in tomatoes carrying Mi-1. Horticulture Environment and Biotechnology, 56, 546–554. crossref
Islam, A., Mercer, C. F., Leung, S., Dijkwel, P. P., & McManus, M. T. (2015). Transcription of biotic stress associated genes in white clover (Trifolium repens L.) differs in response to cyst and rootknot nematode infection. PLoS ONE, 10(9), e0137981. crossref
Jacquet, M., Bongiovanni, M., Martinez, M., Verschave, P., Wajnberg, E., & Castagnone-Sereno, P. (2005). Variation in resistance to the root-knot nematode Meloidogyne incognita in tomato genotypes bearing the Mi gene. Plant Pathology, 54(2), 93–99. crossref
Kammerhofer, N., Egger, B., Dobrev, P., Vankova, R., Hofmann, J., Schausberger, P., & Wieczorek, K. (2015). Systemic above- and belowground cross talk: Hormone-based responses triggered by Heterodera schachtii and shoot herbivores in Arabidopsis thaliana. Journal of Experimental Botany, 66(22), 7005–7017. crossref
Kaplan, I., Halitschke, R., Kessler, A., Rehill, B. J., Sardanelli, S., & Denno, R. F. (2008). Physiological integration of roots and shoots in plant defense strategies links above- and belowground herbivory. Ecology Letters, 11(8), 841–851. crossref
Kim, H. K., Choi, Y. H., & Verpoorte, R. (2010). NMRbased metabolomic analysis of plants. Nature Protocols, 5, 536–549. crossref
Lanubile, A., Ferrarini, A., Maschietto, V., Delledonne, M., Marocco, A., & Bellin, D. (2014). Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics, 15, 710. crossref
Leiss, K. A., Choi, Y. H., Abdel-Farid, I. B., Verpoorte, R., & Klinkhamer, P. G. L. (2009). NMR metabolomics of thrips (Frankliniella occidentalis) resistance in senecio hybrids. Journal of Chemical Ecology, 35, 219–229. crossref
López-Gresa, M. P., Maltese, F., Bellés, J. M., Conejero, V., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2010). Metabolic response of tomato leaves upon different plant-pathogen interactions. Phytochemical Analysis, 21(1), 89–94. crossref
Manosalva, P., Manohar, M., von Reuss, S. H., Chen, S., Koch, A., Kaplan, F., ... Klessig, D. F. (2015). Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nature Communications, 6, 7795. crossref
Melakeberhan, H., Webster, J. M., Brooke, R. C., D’Auria, J. M., & Cackette, M. (1987). Effect of Meloidogyne incognita on plant nutrient concentration and its influence on the physiology of beans. Journal of Nematology, 19(3), 324–330. Retrieved from website
Murti, R. H., Muamiroh, F., Pujiati, T. R. W., & Indarti, S. (2012). Early steps of tomato breeding resist to root-knot nematode. AGRIVITA Journal of Agricultural Science, 34(3), 270–277. crossref
Ohri, P., & Pannu, S. K. (2010). Effect of phenolic compounds on nematodes- A review. Journal of Applied and Natural Science, 2(2), 344–350. crossref
Park, Y.-S., & Ryu, C.-M. (2015). Inter-organ defense networking: Leaf whitefly sucking elicits plant immunity to crown gall disease caused by Agrobacterium tumefaciens. Plant Signaling and Behavior, 10(11), e1081325. crossref
Pieterse, C. M. J., & van Loon, L. C. (1999). Salicylic acid-independent plant defence pathways. Trends in Plant Science, 4(2), 52–58. crossref
Rasmann, S., & Agrawal, A. A. (2008). In defense of roots: A research agenda for studying plant resistance to belowground herbivory. Plant Physiology, 146(3), 875–880. crossref
Romero González, R. R. (2011). A metabolomics approach to thrips resistance in tomato (Thesis). Leiden University. Retrieved from website
Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J. A., Hilal, M., & Prado, F. E. (2009). Soluble sugars-metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signaling and Behavior, 4(5), 388–393. crossref
Sasser, J. N., & Freckman, D. W. (1987). A world perspective on nematology: The role of the society. In: J. A. Veech, & D. W. Dickson (Eds.), Vistas on Nematology (pp. 7-14). Maryland: Hyattsville. Retrieved from website
Wubben, M. J. E., Jin, J., & Baum, T. J. (2008). Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesisrelated gene expression in roots. Molecular Plant-Microbe Interactions, 21(4), 424–432. crossref
DOI: http://doi.org/10.17503/agrivita.v42i3.2440
Copyright (c) 2020 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.