Granular Formulation Test of Pseudomonas fluorescens P60 for Controling Bacterial Wilt (Ralstonia solanacearum) of Tomato In Planta

Loekas Soesanto, Endang Mugiastuti, Khoeruriza Khoeruriza

Abstract


Ralstonia solanacearum is the most devastating bacteria. Pseudomonas fluorescens P60 is a bacterial antagonist. This research aimed to study shelf life, antagonism and the effect of granular application of P. fluorescens P60 to control bacterial wilt and growth of tomato in planta. The research was conducted at the Plant Protection Laboratory and the screen house, Faculty of Agriculture, Jenderal Soedirman University, from October 2018 to March 2019. A randomized block design was used with six treatments and five replicates. The treatments were control, R. solanacearum + 1, 5, 10, and 15 g the granule, and bactericide (Agrimycine sulfate 20%). Variables observed were population density, clear zone, incubation period, disease incidence, disease intensity, area under disease progress curve (AUDPC), crop height, root length, crops fresh weights, and phenolic compound content qualitatively. Result showed that the formulation up to 10 weeks still performed a high P. fluorescens P60 population and good activity. All the granular and the bactericide effectively suppressed the disease indicated by the lenghtening incubation period of 22.77-26.25%, reducing the disease incidence as 60-85%, decreasing disease intensity as 65-85%, and decreasing AUDPC as 75.69-86.11%-days, increasing phenolic compound content qualitatively, and increasing crop height between 24.85-36.17%, and fresh weight between 46.04-57.13%.

Keywords


Bacterial wilt; Granular formulation; Pseudomonas fluorescens P60; Tomato

Full Text:

PDF

References


Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. https://doi.org/10.2478/v10102-009-0001-7

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6, 42. https://doi.org/10.3390/plants6040042

Al-Waily, D. S., Al-Saad, L. A., & Al-Dery, S. S. (2018). Formulation of Pseudomonas fluorescens as a biopesticide against soil borne root pathogens. The Iraqi Journal of Agricultural Science, 49(2), 235–242. Retrieved from https://search.proquest.com/openview/69e6c79ced438cac005e571aa495d550/1?cbl=2045989&pqorigsite=gscholar

Asadi, M., Soltani, F., Mohammadi, M. R. T., Khodadadi, A., & Abdollahy, M. (2019). A successful operational initiative in copper oxide flotation: Sequential sulphidisation-flotation technique. Physicochemical Problems of Mineral Processing, 55(2), 356–369. https://doi.org/10.5277/ppmp18137

Aslam, M. N., Mukhtar, T., Hussain, M. A., & Raheel, M. (2017). Assessment of resistance to bacterial wilt incited by Ralstonia solanacearum in tomato germplasm. Journal of Plant Diseases and Protection, 124(6), 585–590. https://doi.org/10.1007/s41348-017-0100-1

Balaž, J., Iličić, R., Maširević, S., Jošić, D., & Kojić, S. (2014). First report of Pseudomonas syringae pv. syringae causing bacterial leaf spots of oil pumpkin (Cucurbita pepo) in Serbia. Plant Disease, 98(5), 684. https://doi.org/10.1094/PDIS-07-13-0714-PDN

Bashan, Y., De-Bashan, L. E., Prabhu, S. R., & Hernandez, J.-P. (2014). Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998-2013). Plant and Soil, 378(1–2), 1–33. https://doi.org/10.1007/s11104-013-1956-x

Bebber, D. P., Ramotowski, M. A. T., & Gurr, S. J. (2013). Crop pests and pathogens move polewards in a warming world. Nature Climate Change, 3, 985–988. https://doi.org/10.1038/nclimate1990

Bhardwaj, T., & Sharma, J. P. (2013). Impact of pesticides application in agricultural industry: An Indian scenario. International Journal of Agriculture and Food Science Technology, 4(8), 817–822. Retrieved from https://www.ripublication.com/ijafst_spl/ijafstv4n8spl_18.pdf

BPS. (2018). Tabel dinamika produksi sayuran. Jakarta, ID: Badan Pusat Statistik. Retrieved from https://www.bps.go.id/subject/55/hortikultura.html#subjekViewTab3

Brugger, S. D., Baumberger, C., Jost, M., Jenni, W., Brugger, U., & Mühlemann, K. (2012). Automated counting of bacterial colony forming units on agar plates. PLoS ONE, 7(3), e33695. https://doi.org/10.1371/journal.pone.0033695

Byrd, A. L., & Segre, J. A. (2016). Adapting Koch’s postulates. Science, 351(6270), 224–226. https://doi.org/10.1126/science.aad6753

Caldwell, C. J., Hynes, R. K., Boyetchko, S. M., & Korber, D. R. (2012). Colonization and bioherbicidal activity on green foxtail by Pseudomonas fluorescens BRG100 in a pesta formulation. Canadian Journal of Microbiology, 58(1), 1–9. https://doi.org/10.1139/W11-109

Carisse, O. (2016). Development of grape downy mildew (Plasmopara viticola) under northern viticulture conditions: influence of fall disease incidence. European Journal of Plant Pathology, 144(4), 773–783. https://doi.org/10.1007/s10658-015-0748-y

Chantaro, P., & Pongsawatmanit, R. (2010). Influence of sucrose on thermal and pasting properties of tapioca starch and xanthan gum mixtures. Journal of Food Engineering, 98(1), 44–50. https://doi.org/10.1016/j.jfoodeng.2009.12.006

Chaudhry, Z., & Rashid, H. (2011). Isolation and characterization of Ralstonia solanacearum from infected tomato plants of Soan Skesar valley of Punjab. Pakistan Journal of Botany, 43(6), 2979–2985. Retrieved from http://www.pakbs.org/pjbot/PDFs/43(6)/55.pdf

Couillerot, O., Prigent-Combaret, C., Caballero-Mellado, J., & Moënne-Loccoz, Y. (2009). Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Letters in Applied Microbiology, 48(5), 505–512. https://doi.org/10.1111/j.1472-765X.2009.02566.x

De Vleesschauwer, D., & Höfte, M. (2009). Rhizobacteria induced systemic resistance. In L. C. Van Loon (Ed.), Advances in Botanical Research (pp. 223–281). Elsevier Ltd. https://doi.org/10.1016/S0065-2296(09)51006-3

de Werra, P., Péchy-Tarr, M., Keel, C., & Maurhofer, M. (2009). Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Applied and Environmental Microbiology, 75(12), 4162–4174. https://doi.org/10.1128/AEM.00295-09

Denancé, N., Ranocha, P., Oria, N., Barlet, X., Rivière, M. P., Yadeta, K. A., … Goffner, D. (2013). Arabidopsis wat1 (walls are thin1)-mediated resistance to the bacterial vascular pathogen, Ralstonia solanacearum, is accompanied by cross-regulation of salicylic acid and tryptophan metabolism. The Plant Journal, 73(2), 225–239. https://doi.org/10.1111/tpj.12027

Druege, U., Franken, P., & Hajirezaei, M. R. (2016). Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Frontiers in Plant Science, 7, 381. https://doi.org/10.3389/fpls.2016.00381

Eyles, A., Bonello, P., Ganley, R., & Mohammed, C. (2010). Induced resistance to pests and pathogens in trees. New Phytologist, 185(4), 893–908. https://doi.org/10.1111/j.1469-8137.2009.03127.x

Gasic, S., & Tanovic, B. (2013). Biopesticide formulations, possibility of application and future trends. Journal Pesticides and Phytomedicine, 28(2), 97–102. https://doi.org/10.2298/pif1302097g

Gull, M., & Hafeez, F. Y. (2012). Characterization of siderophore producing bacterial strain Pseudomonas fluorescens Mst 8.2 as plant growth promoting and biocontrol agent in wheat. African Journal of Microbiology Research, 6(33), 6308–6318. https://doi.org/10.5897/ajmr12.1285

Gupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K., & Singh, V. (2015). Plant Growth Promoting Rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. Journal of Microbial & Biochemical Technology, 7(2), 096-102. Retrieved from https://www.longdom.org/open-access/plantgrowth-promoting-rhizobacteria-pgpr-currentand-future-prospects-for-development-ofsustainable-agriculture-1948-5948-1000188.pdf

Hossain, K. S., Miah, M. A. T., & Bashar, M. A. (2011). Preferred rice varieties, seed source, disease incidence and loss assessment in bakanae disease. Journal of Agroforestry and Environment, 5(2), 125–128. Retrieved from https://jaebd.com/wp-content/uploads/2018/09/28.-Preferredrice-varieties-seed-source-disease-incidenceand-loss-assessment-in-bakanae-disease-KSHossain.pdf.

Jiang, G., Wei, Z., Xu, J., Chen, H., Zhang, Y., She, X., & Liao, B. (2017). Bacterial wilt in China: History, current status, and future perspectives. Frontiers in Plant Science, 8, 1549. https://doi.org/10.3389/fpls.2017.01549

Jiang, J., Lu, Y., Li, J., Li, L., He, X., Shao, H., & Dong, Y. (2014). Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt). PLoS ONE, 9(5), e97753. https://doi.org/10.1371/journal.pone.0097753

Keswani, C., Bisen, K., Singh, V., Sarma, B. K., & Singh, H. B. (2016). Formulation technology of biocontrol agents: Present status and future prospects. In N. Arora, S. Mehnaz, & R. Balestrini (Eds.), Bioformulations: For Sustainable Agriculture (pp. 35–52). New Delhi, IN: Springer. https://doi.org/10.1007/978-81-322-2779-3_2

Kim, S. G., Hur, O. S., Ro, N. Y., Ko, H. C., Rhee, J. H., Sung, J. S., … Baek, H. J. (2016). Evaluation of resistance to Ralstonia solanacearum in tomato genetic resources at seedling stage. Plant Pathology Journal, 32(1), 58–64. https://doi.org/10.5423/PPJ.NT.06.2015.0121

Lebeau, A., Daunay, M. C., Frary, A., Palloix, A., Wang, J. F., Dintinger, J., … Prior, P. (2011). Bacterial wilt resistance in tomato, pepper, and eggplant: Genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology, 101(1), 154–165. https://doi.org/10.1094/PHYTO-02-10-0048

Lee, J. H., Jang, K. S., Choi, Y. H., Kim, J.-C., & Choi, G. J. (2015). Development of an efficient screening system for resistance of tomato cultivars to Ralstonia solanacearum. Research in Plant Disease, 21(4), 290–296. https://doi.org/10.5423/rpd.2015.21.4.290

Li, X. G., Zhang, T. L., Wang, X. X., Hua, K., Zhao, L., & Han, Z. M. (2013). The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. International Journal of Biological Sciences, 9(2), 164–173. https://doi.org/10.7150/ijbs.5579

Lowe-Power, T. M., Khokhani, D., & Allen, C. (2018). How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends in Microbiology, 26(11), 929–942. https://doi.org/10.1016/j.tim.2018.06.002

Manan, A., Mugiastuti, E., & Soesanto, L. (2018). Kemampuan campuran Bacillus sp., Pseudomonas fluorescens, dan Trichoderma sp. untuk mengendalikan penyakit layu bakteri pada tanaman tomat. Jurnal Fitopatologi Indonesia, 14(2), 63–68. https://doi.org/10.14692/jfi.14.2.63

Manikandan, R., Saravanakumar, D., Rajendran, L., Raguchander, T., & Samiyappan, R. (2010). Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biological Control, 54(2), 83–89. https://doi.org/10.1016/j.biocontrol.2010.04.004

Nguyen, M. T., & Ranamukhaarachchi, S. L. (2010). Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. Journal of Plant Pathology, 92(2), 395–406. Retrieved from http://www.sipav.org/main/jpp/index.php/jpp/article/view/183

Norman, D. J., Zapata, M., Gabriel, D. W., Duan, Y. P., Yuen, J. M. F., Mangravita-Novo, A., & Donahoo, R. S. (2009). Genetic diversity and host range variation of Ralstonia solanacearum strains entering North America. Phytopathology, 99(9), 1070–1077. https://doi.org/10.1094/PHYTO-99-9-1070

Paraschivu, M., Cotuna, O., & Paraschivu, M. (2013). The use of the area under the disease progress curve (AUDPC) to assess the epidemics of Septoria tritici in winter wheat. Research Journal of Agricultural Science, 45(1), 193–201. Retrieved from https://rjas.ro/download/paper_version.paper_file.a9a0470fe4e53270.313536302e706466.pdf

Pathma, J., Rahul, G. R., Kennedy, R. K., Subashri, R., & Sakthivel, N. (2011). Secondary metabolite production by bacterial antagonists. Journal of Biological Control, 25(3), 165–181. Retrieved from http://www.informaticsjournals.com/index.php/jbc/article/view/3716

Pavithra, N., Sathish, L., & Ananda, K. (2012). Antimicrobial and enzyme activity of endophytic fungi isolated from Tulsi. Journal of Pharmaceutical and Biomedical Sciences, 16(16), 1–6. Retrieved from https://www.researchgate.net/publication/230771219_Antimicrobial_and_Enzyme_Activity_of_Endophytic_Fungi_Isolated_from_Tulsi

Peeran, M. F., Krishnan, N., Thangamani, P. R., Gandhi, K., Thiruvengadam, R., & Kuppusamy, P. (2014). Development and evaluation of waterin-oil formulation of Pseudomonas fluorescens (FP7) against Colletotrichum musae incitant of anthracnose disease in banana. European Journal of Plant Pathology, 138(1), 167–180. https://doi.org/10.1007/s10658-013-0320-6

Pontes, N. C., Fujinawa, M. F., & Oliveira, J. R. (2017). Selective media for detection and quantification of Brazilian Ralstonia solanacearum isolates in soil. Horticultura Brasileira, 35(1), 41–47. https://doi.org/10.1590/s0102-053620170107

Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37, 613–620. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.606.9501&rep=rep1&type=pdf

Sahera, W. O., Sabaruddin, L., & Safuan, L. O. (2012). Pertumbuhan dan produksi tomat (Lycopersicum esculentuma Mill) pada berbagai dosis bokhasi kotoran sapi dan jarak tanam. Jurnal Berkala Penelitian Agronomi, 1(2), 102–106. Retrieved from http://faperta.uho.ac.id/berkala_gronomi/Fulltext/2012/BPA0102102.pdf

Seenivasan, N., David, P. M. M., Vivekanandan, P., & Samiyappan, R. (2012). Biological control of rice root-knot nematode, Meloidogyne graminicola through mixture of Pseudomonas fluorescens strains. Biocontrol Science and Technology, 22(6), 611–632. https://doi.org/10.1080/09583157.2012.675052

Sivasakthi, S., Usharani, G., & Saranraj, P. (2014). Biocontrol potentiality of plant growth promoting bacteria (PGPR) - Pseudomonas fluorescens and Bacillus subtilis: A review. African Journal of Agricultural Research, 9(16), 1265–1277. https://doi.org/10.5897/AJAR2013.7914

Soesanto, L., Mugiastuti, E., & Rahayuniati, R. F. (2010). Kajian mekanisme antagonis Pseudomonas fluorescens P60 terhadap Fusarium oxysporum F.SP. Lycopersici pada tanaman tomat in vivo. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 10(2), 108–115. Retrieved from http://jhpttropika.fp.unila.ac.id/index.php/jhpttropika/article/download/203/199

Soesanto, L., Mugiastuti, E., & Rahayuniati, R. F. (2011). Pemanfaatan beberapa kaldu hewan sebagai bahan formula cair Pseudomonas fluorescens P60 untuk mengendalikan Sclerotium rolfsii pada tanaman mentimun. Jurnal Perlindungan Tanaman Indonesia, 17(1), 7-17. Retrived from https://journal.ugm.ac.id/jpti/article/view/9384

Tahat, M. M., & Sijam, K. (2010). Ralstoina solanacearum: The bacterial wilt causal agent. Asian Journal of Plant Sciences, 9(7), 385–393. https://doi.org/10.3923/ajps.2010.385.393

Tripathi, S., Das, A., Chandra, A., & Varma, A. (2015). Development of carrier-based formulation of root endophyte Piriformospora indica and its evaluation on Phaseolus vulgaris L. World Journal of Microbiology and Biotechnology, 31(2), 337–344. https://doi.org/10.1007/s11274-014-1785-y

Trippe, K., McPhail, K., Armstrong, D., Azevedo, M., & Banowetz, G. (2013). Pseudomonas fluorescens SBW25 produces furanomycin, a non-proteinogenic amino acid with selective antimicrobial properties. BMC Microbiology, 13, 111. https://doi.org/10.1186/1471-2180-13-111

Weller, D. M., Mavrodi, D. V, van Pelt, J. A., Pieterse, C. M. J., van Loon, L. C., & Bakker, P. A. H. M. (2012). Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-Diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology, 102(4), 403–412. https://doi.org/10.1094/PHYTO-08-11-0222

Zuluaga, A. P., Puigvert, M., & Valls, M. (2013). Novel plant inputs influencing Ralstonia solanacearum during infection. Frontiers in Microbiology, 4, 349. https://doi.org/10.3389/fmicb.2013.00349




DOI: http://doi.org/10.17503/agrivita.v41i3.2318

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.