Somatic Embryos Induction of East Kalimantan Local Rice (Oryza sativa L.) Cultivars and In Vitro Selection Against Salinity
Abstract
Keywords
Full Text:
PDFReferences
Agisimanto, D., Normah, M. N., & Ibrahim, R. (2019). Rapid somatic embryogenesis of Citrus reticulata Blanco cv. Madu in an air-lift bioreactor culture. AGRIVITA Journal of Agricultural Science, 41(2), 284–294. https://doi.org/10.17503/agrivita.v41i2.2237
Amrita, P., Sunita, S., & Ranjan, R. G. (2015). Study of in vitro selection and plant regeneration of Indica rice tolerant to iron. International Journal of Agriculture, Environment and Biotechnology, 8(2), 285–293. https://doi.org/10.5958/2230-732x.2015.00035.2
Armstrong, C. L., & Green, C. E. (1985). Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta, 164, 207–214. https://doi.org/10.1007/BF00396083
Biswas, J., Chowdhury, B., Bhattacharya, A., & Mandal, A. B. (2002). In vitro screening for increased drought tolerance in rice. In Vitro Cellular and Developmental Biology - Plant, 38, 525–530. https://doi.org/10.1079/IVP2002342
Efferth, T. (2019). Biotechnology applications of plant callus cultures. Engineering, 5(1), 50–59. https://doi.org/10.1016/j.eng.2018.11.006
FAO. (2005). 20 Things to know about the impact of salt water on agricultural land in Aceh Province. FAO Field Guide. Retrieved from http://www.fao.org/ag/tsunami/docs/saltwater-guide.pdf
FAO. (2020). Salt-affected soils. FAO Soils Portal. Retrieved from http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/
Gatphoh, E. M., Pattanayak, A., Iangrai, B., Khongwir, D. E. A., Pale, G., & Kalita, M. C. (2018). Optimizing tissue culture media for efficient callus induction and regeneration from rice seeds. International Journal of Current Trends in Science and Technology, 8(4), 20201–20210.
Grieve, C. M., Grattan, S. R., & Maas, E. V. (2012). Plant salt tolerance. In W. W. Walender & K. K. Tanji (Eds.), Agricultural Salinity, Assessment and Management (2nd Edition) (ASCE Manual and Reports on Engineering Practice no. 71, pp. 405–459). Reston, VA: ASCE. Retrieved from https://www.ars.usda.gov/ARSUserFiles/20360500/pdf_pubs/P2246.pdf
Guo, J. S., Zhou, Q., Li, X. J., Yu, B. J., & Luo, Q. Y. (2017). Enhancing NO3ˉ supply confers NaCl tolerance by adjusting Clˉ uptake and transport in G. max & G. soja. Journal of Soil Science and Plant Nutrition, 17(1), 194-204. Retrieved from https://scielo.conicyt.cl/pdf/jsspn/v17n1/aop1517.pdf
He, Y., Guo, X., Lu, R., Niu, B., Pasapula, V., Hou, P., … Chen, F. (2009). Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls. Plant Cell, Tissue and Organ Culture, 98, 11–17. https://doi.org/10.1007/s11240-009-9533-y
Hussain, A., Naz, S., Nazir, H., & Shinwari, Z. K. (2011). Tissue culture of black pepper (Piper nigrum L.) in Pakistan. Pakistan Journal of Botany, 43(2), 1069–1078. Retrieved from https://www.researchgate.net/publication/228485455_Tissue_culture_of_black_pepper_Piper_nigrum_L_in_Pakistan
Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: mechanisms of induction and repression. The Plant Cell, 25(9), 3159–3173. https://doi.org/10.1105/tpc.113.116053
Kamal, N., Nasuruddin, K., Haque, M., & Yasmin, S. (2013). Optimization of regeneration protocol of rice from embryo derived callus. Progressive Agriculture, 18(2), 25–33. https://doi.org/10.3329/pa.v18i2.17461
Khan, U. W., Ahmed, R., Shahzadi, I., & Shah, M. M. (2015). Some important factors influencing tissue culture response in wheat. Sarhad Journal of Agriculture, 31(4), 199–209. https://doi.org/10.17582/journal.sja/2015/31.4.199.209
Kumar, K., Gill, M. I. S., & Gosal, S. S. (2018). Somatic embryogenesis, in vitro selection and plantlet regeneration for Citrus improvement. In S. S. Gosal & S. H. Wani (Eds.), Biotechnologies of Crop Improvement, Volume 1 (pp. 373–406). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-78283-6_11
Lindsey, K., & Yeoman, M. M. (1985). Dynamics of plant cell cultures. In I. K. Vasil (Ed.), Cell Culture and Somatic Cell Genetics of Plants: Cell Growth, Nutrition, Cytodifferentiation, and Cryopreservation (pp. 61–102). London, UK: Academic Press. Retrieved from https://books.google.co.id/books?id=cd-zqlJV_5wC&printsec=frontcover
Litalien, A., & Zeeb, B. (2020). Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Science of The Total Environment, 698, 134235. https://doi.org/10.1016/j.scitotenv.2019.134235
Liu, X., Zhao, Y., Chen, X., Dong, L., Zheng, Y., Wu, M., … Liu, W. (2021). Establishment of callus induction system, histological evaluation and taxifolin production of Larch. Plant Cell, Tissue, and Organ Culture, 147(3), 467-475. https://doi.org/10.1007/s11240-021-02139-7
Loyola-Vargas, V. M., & Ochoa-Alejo, N. (2016). Somatic embryogenesis. An overview. In V. M. Loyola-Vargas & N. Ochoa-Alejo (Eds.), Somatic Embryogenesis: Fundamental Aspects and Applications (pp. 1–8). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-33705-0_1
Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030
Mohammadi, H., Rahimpour, B., Pirasteh-Anosheh, H., & Race, M. (2022). Salicylic acid manipulates ion accumulation and distribution in favor of salinity tolerance in Chenopodium quinoa. International Journal of Environmental Research and Public Health, 19(3), 1576. https://doi.org/10.3390/ijerph19031576
Mohd Din, Abd. R. J., Iliyas Ahmad, F., Wagiran, A., Abd Samad, A., Rahmat, Z., & Sarmidi, M. R. (2016). Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas). Saudi Journal of Biological Sciences, 23(1), S69–S77. https://doi.org/10.1016/j.sjbs.2015.10.022
Nadeem, M., Tariq, M. N., Amjad, M., Sajjad, M., Akram, M., Imran, M., … Kulikov, D. (2020). Salinity-induced changes in the nutritional quality of bread wheat (Triticum aestivum L.) genotypes. AGRIVITA Journal of Agricultural Science, 42(1), 1–12. https://doi.org/10.17503/agrivita.v42i1.2273
Nurhasanah, Pratama, A. N., & Sunaryo, W. (2016). Anther culture of local upland rice varieties from East Kalimantan: Effect of panicle cold pre-treatment and putrescine enriched medium. Biodiversitas Journal of Biological Diversity, 17(1), 148–153. https://doi.org/10.13057/biodiv/d170122
Nurhasanah, Ramitha, Supriyanto, B., & Sunaryo, W. (2018). Somatic embryogenesis of East Kalimantan local upland rice varieties. IOP Conference Series: Earth and Environmental Science, 144, 012031. https://doi.org/10.1088/1755-1315/144/1/012031
Purnamaningsih, R. (2006). Induksi kalus dan optimasi regenerasi empat varietas padi melalui kultur in vitro. Jurnal AgroBiogen, 2(2), 74–80. https://doi.org/10.21082/jbio.v2n2.2006.p74-80
Rahmah, M., Anwar, A., & Swasti, E. (2020). Karamunting (Rhodomyrtus tomentosa) callus induction in vitro. International Journal of Environment, Agriculture and Biotechnology, 5(2), 459-465. https://doi.org/10.22161/ijeab.52.20
Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P., & Dhawan, A. K. (2011). Developing stress tolerant plants through in vitro selection-An overview of the recent progress. Environmental and Experimental Botany, 17(1), 89–98. https://doi.org/10.1016/j.envexpbot.2010.10.021
Sankepally, S. S. R., & Singh, B. (2016). Optimization of regeneration using differential growth regulators in indica rice cultivars. 3 Biotech, 6(1), 19. https://doi.org/10.1007/s13205-015-0343-0
Sato, Y. (2008). Genetic control of embryogenesis in rice. In H.-Y. Hirano, Y. Sano, A. Hirai, & T. Sasaki (Eds.), Rice Biology in the Genomics Era (pp. 149–161). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74250-0_12
Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. In: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques (pp. 43-53). Springer, Cham. https://doi.org/10.1007/978-3-319-96190-3_2
Slinger, D., & Tenison, K. (2005). Salinity glove box guide: NSW Murray & Murrumbidgee catchments. NSW Department of Primary Industries. Retrieved from https://www.google.co.id/books/edition/Salinity_Glove_Box_Guide/aKg3twAACAAJ?hl=en
Tedeschi, A. (2020). Irrigated agriculture on saline soils: A perspective. Agronomy, 10(11), 1630. https://doi.org/10.3390/agronomy10111630
von Arnold, S., Sabala, I., Bozhkov, P., Dyachok, J., & Filonova, L. (2002). Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 69, 233–249. https://doi.org/10.1023/A:1015673200621
Wakeel, A. (2013). Potassium-sodium interaction in soil and plant under saline-sodic conditions. Journal of Plant Nutrition and Soil Science, 176(3), 344-354. https://doi.org/10.1002/jpln.201200417
Wani, S. H., Sofi, P. A., Gosal, S. S., & Singh, N. B. (2010). In vitro screening of rice (Oryza sativa L) callus for drought tolerance. Communications in Biometry and Crop Science, 5(2), 108–115. Retrieved from http://agrobiol.sggw.waw.pl/~cbcs/articles/CBCS_5_2_6.pdf?
Wijesekera, T. P., Iqbal, M. C. M., & Bandara, D. C. (2007). Plant regeneration in vitro by organogenesis on callus induced from mature embryos of three rice varieties (Oryza sativa L. ssp. indica). Tropical Agricultural Research, 19, 25–35. Retrieved from http://www.pgia.pdn.ac.lk/files/Annual_congress/journel/v19/4_Plant_Regeneration.pdf
DOI: http://doi.org/10.17503/agrivita.v0i0.2193
Copyright (c) 2022 The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.