Somatic Embryos Induction of East Kalimantan Local Rice (Oryza sativa L.) Cultivars and In Vitro Selection Against Salinity

Muktirianur Muktirianur, Bambang Supriyanto, Widi Sunaryo, Nurhasanah Nurhasanah

Abstract


Soil salinity is one major environmental constraint on rice production, especially in coastal areas. The development of salt-tolerant genotypes is considered to be the most effective breeding strategy to overcome the constraint. This study aims to induce somatic embryos formation of East Kalimantan local rice cultivars and to obtain tolerant somatic embryos under saline condition via in vitro selection. Four commonly cultivated local rice cultivars, namely Buyung, Siam, Ketalun Tawar and Serai Gunung, were used in this study. The somatic embryos were produced using three different plant growth regulator (PGR) compositions. The salinity tolerance level of somatic embryos was induced by in vitro selection in salt toxicity medium containing 0 mM; 50 mM; 100 mM; 150 mM; 200 mM NaCl. The best medium for somatic embryogenesis contains 1 mg/l 2,4-D + 0.5 m/l  BAP, resulting the highest percentage of cream and white non-compact callus on the tested cultivars. More than 70% of the somatic embryos were tolerant against salinity (NaCl 200 mM). However, only somatic embryos derived from Serai Gunung could regenerate into normal plantlets.

Keywords


East Kalimantan; in vitro selection; local rice; saline soil; somatic embryo

Full Text:

PDF

References


Agisimanto, D., Normah, M. N., & Ibrahim, R. (2019). Rapid somatic embryogenesis of Citrus reticulata Blanco cv. Madu in an air-lift bioreactor culture. AGRIVITA Journal of Agricultural Science, 41(2), 284–294. https://doi.org/10.17503/agrivita.v41i2.2237

Amrita, P., Sunita, S., & Ranjan, R. G. (2015). Study of in vitro selection and plant regeneration of Indica rice tolerant to iron. International Journal of Agriculture, Environment and Biotechnology, 8(2), 285–293. https://doi.org/10.5958/2230-732x.2015.00035.2

Armstrong, C. L., & Green, C. E. (1985). Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta, 164, 207–214. https://doi.org/10.1007/BF00396083

Biswas, J., Chowdhury, B., Bhattacharya, A., & Mandal, A. B. (2002). In vitro screening for increased drought tolerance in rice. In Vitro Cellular and Developmental Biology - Plant, 38, 525–530. https://doi.org/10.1079/IVP2002342

Efferth, T. (2019). Biotechnology applications of plant callus cultures. Engineering, 5(1), 50–59. https://doi.org/10.1016/j.eng.2018.11.006

FAO. (2005). 20 Things to know about the impact of salt water on agricultural land in Aceh Province. FAO Field Guide. Retrieved from http://www.fao.org/ag/tsunami/docs/saltwater-guide.pdf

FAO. (2020). Salt-affected soils. FAO Soils Portal. Retrieved from http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/

Gatphoh, E. M., Pattanayak, A., Iangrai, B., Khongwir, D. E. A., Pale, G., & Kalita, M. C. (2018). Optimizing tissue culture media for efficient callus induction and regeneration from rice seeds. International Journal of Current Trends in Science and Technology, 8(4), 20201–20210.

Grieve, C. M., Grattan, S. R., & Maas, E. V. (2012). Plant salt tolerance. In W. W. Walender & K. K. Tanji (Eds.), Agricultural Salinity, Assessment and Management (2nd Edition) (ASCE Manual and Reports on Engineering Practice no. 71, pp. 405–459). Reston, VA: ASCE. Retrieved from https://www.ars.usda.gov/ARSUserFiles/20360500/pdf_pubs/P2246.pdf

Guo, J. S., Zhou, Q., Li, X. J., Yu, B. J., & Luo, Q. Y. (2017). Enhancing NO3ˉ supply confers NaCl tolerance by adjusting Clˉ uptake and transport in G. max & G. soja. Journal of Soil Science and Plant Nutrition, 17(1), 194-204. Retrieved from https://scielo.conicyt.cl/pdf/jsspn/v17n1/aop1517.pdf

He, Y., Guo, X., Lu, R., Niu, B., Pasapula, V., Hou, P., … Chen, F. (2009). Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls. Plant Cell, Tissue and Organ Culture, 98, 11–17. https://doi.org/10.1007/s11240-009-9533-y

Hussain, A., Naz, S., Nazir, H., & Shinwari, Z. K. (2011). Tissue culture of black pepper (Piper nigrum L.) in Pakistan. Pakistan Journal of Botany, 43(2), 1069–1078. Retrieved from https://www.researchgate.net/publication/228485455_Tissue_culture_of_black_pepper_Piper_nigrum_L_in_Pakistan

Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: mechanisms of induction and repression. The Plant Cell, 25(9), 3159–3173. https://doi.org/10.1105/tpc.113.116053

Kamal, N., Nasuruddin, K., Haque, M., & Yasmin, S. (2013). Optimization of regeneration protocol of rice from embryo derived callus. Progressive Agriculture, 18(2), 25–33. https://doi.org/10.3329/pa.v18i2.17461

Khan, U. W., Ahmed, R., Shahzadi, I., & Shah, M. M. (2015). Some important factors influencing tissue culture response in wheat. Sarhad Journal of Agriculture, 31(4), 199–209. https://doi.org/10.17582/journal.sja/2015/31.4.199.209

Kumar, K., Gill, M. I. S., & Gosal, S. S. (2018). Somatic embryogenesis, in vitro selection and plantlet regeneration for Citrus improvement. In S. S. Gosal & S. H. Wani (Eds.), Biotechnologies of Crop Improvement, Volume 1 (pp. 373–406). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-78283-6_11

Lindsey, K., & Yeoman, M. M. (1985). Dynamics of plant cell cultures. In I. K. Vasil (Ed.), Cell Culture and Somatic Cell Genetics of Plants: Cell Growth, Nutrition, Cytodifferentiation, and Cryopreservation (pp. 61–102). London, UK: Academic Press. Retrieved from https://books.google.co.id/books?id=cd-zqlJV_5wC&printsec=frontcover

Litalien, A., & Zeeb, B. (2020). Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Science of The Total Environment, 698, 134235. https://doi.org/10.1016/j.scitotenv.2019.134235

Liu, X., Zhao, Y., Chen, X., Dong, L., Zheng, Y., Wu, M., … Liu, W. (2021). Establishment of callus induction system, histological evaluation and taxifolin production of Larch. Plant Cell, Tissue, and Organ Culture, 147(3), 467-475. https://doi.org/10.1007/s11240-021-02139-7

Loyola-Vargas, V. M., & Ochoa-Alejo, N. (2016). Somatic embryogenesis. An overview. In V. M. Loyola-Vargas & N. Ochoa-Alejo (Eds.), Somatic Embryogenesis: Fundamental Aspects and Applications (pp. 1–8). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-33705-0_1

Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030

Mohammadi, H., Rahimpour, B., Pirasteh-Anosheh, H., & Race, M. (2022). Salicylic acid manipulates ion accumulation and distribution in favor of salinity tolerance in Chenopodium quinoa. International Journal of Environmental Research and Public Health, 19(3), 1576. https://doi.org/10.3390/ijerph19031576

Mohd Din, Abd. R. J., Iliyas Ahmad, F., Wagiran, A., Abd Samad, A., Rahmat, Z., & Sarmidi, M. R. (2016). Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas). Saudi Journal of Biological Sciences, 23(1), S69–S77. https://doi.org/10.1016/j.sjbs.2015.10.022

Nadeem, M., Tariq, M. N., Amjad, M., Sajjad, M., Akram, M., Imran, M., … Kulikov, D. (2020). Salinity-induced changes in the nutritional quality of bread wheat (Triticum aestivum L.) genotypes. AGRIVITA Journal of Agricultural Science, 42(1), 1–12. https://doi.org/10.17503/agrivita.v42i1.2273

Nurhasanah, Pratama, A. N., & Sunaryo, W. (2016). Anther culture of local upland rice varieties from East Kalimantan: Effect of panicle cold pre-treatment and putrescine enriched medium. Biodiversitas Journal of Biological Diversity, 17(1), 148–153. https://doi.org/10.13057/biodiv/d170122

Nurhasanah, Ramitha, Supriyanto, B., & Sunaryo, W. (2018). Somatic embryogenesis of East Kalimantan local upland rice varieties. IOP Conference Series: Earth and Environmental Science, 144, 012031. https://doi.org/10.1088/1755-1315/144/1/012031

Purnamaningsih, R. (2006). Induksi kalus dan optimasi regenerasi empat varietas padi melalui kultur in vitro. Jurnal AgroBiogen, 2(2), 74–80. https://doi.org/10.21082/jbio.v2n2.2006.p74-80

Rahmah, M., Anwar, A., & Swasti, E. (2020). Karamunting (Rhodomyrtus tomentosa) callus induction in vitro. International Journal of Environment, Agriculture and Biotechnology, 5(2), 459-465. https://doi.org/10.22161/ijeab.52.20

Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P., & Dhawan, A. K. (2011). Developing stress tolerant plants through in vitro selection-An overview of the recent progress. Environmental and Experimental Botany, 17(1), 89–98. https://doi.org/10.1016/j.envexpbot.2010.10.021

Sankepally, S. S. R., & Singh, B. (2016). Optimization of regeneration using differential growth regulators in indica rice cultivars. 3 Biotech, 6(1), 19. https://doi.org/10.1007/s13205-015-0343-0

Sato, Y. (2008). Genetic control of embryogenesis in rice. In H.-Y. Hirano, Y. Sano, A. Hirai, & T. Sasaki (Eds.), Rice Biology in the Genomics Era (pp. 149–161). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74250-0_12

Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. In: Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques (pp. 43-53). Springer, Cham. https://doi.org/10.1007/978-3-319-96190-3_2

Slinger, D., & Tenison, K. (2005). Salinity glove box guide: NSW Murray & Murrumbidgee catchments. NSW Department of Primary Industries. Retrieved from https://www.google.co.id/books/edition/Salinity_Glove_Box_Guide/aKg3twAACAAJ?hl=en

Tedeschi, A. (2020). Irrigated agriculture on saline soils: A perspective. Agronomy, 10(11), 1630. https://doi.org/10.3390/agronomy10111630

von Arnold, S., Sabala, I., Bozhkov, P., Dyachok, J., & Filonova, L. (2002). Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 69, 233–249. https://doi.org/10.1023/A:1015673200621

Wakeel, A. (2013). Potassium-sodium interaction in soil and plant under saline-sodic conditions. Journal of Plant Nutrition and Soil Science, 176(3), 344-354. https://doi.org/10.1002/jpln.201200417

Wani, S. H., Sofi, P. A., Gosal, S. S., & Singh, N. B. (2010). In vitro screening of rice (Oryza sativa L) callus for drought tolerance. Communications in Biometry and Crop Science, 5(2), 108–115. Retrieved from http://agrobiol.sggw.waw.pl/~cbcs/articles/CBCS_5_2_6.pdf?

Wijesekera, T. P., Iqbal, M. C. M., & Bandara, D. C. (2007). Plant regeneration in vitro by organogenesis on callus induced from mature embryos of three rice varieties (Oryza sativa L. ssp. indica). Tropical Agricultural Research, 19, 25–35. Retrieved from http://www.pgia.pdn.ac.lk/files/Annual_congress/journel/v19/4_Plant_Regeneration.pdf




DOI: http://doi.org/10.17503/agrivita.v0i0.2193

Copyright (c) 2022 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.