Decomposition of Oil Palm Frond and Leaflet Residues
Abstract
Keywords
Full Text:
PDFReferences
Aljuboori, A. H. R. (2013). Oil palm biomass residue in Malaysia: Availability and sustainability. International Journal of Biomass & Renewables, 2(1), 13–18. Retrieved from website
Ariyanti, M., Maxiselly, Y., Rosniawaty, S., & Indrawan, R. A. (2019). Pertumbuhan kelapa sawit belum menghasilkan dengan pemberian pupuk organik asal pelepah kelapa sawit dan asam humat. Jurnal Penelitian Kelapa Sawit, 27(2), 71-82. Retrieved from website
Berg, B., & Staaf, H. (1980). Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition. Ecological Bulletins, (32), 373–390. Retrieved from website
BPS. (2018). Statistik kelapa sawit Indonesia 2017. Jakarta, ID: Badan Pusat Statistik. Retrieved from website
Brady, N. C., & Weil, R. R. (2001). The nature and properties of soils (13th ed.). New Jersey: Prentice Hall.
Dence, C. W. (1992). The Determination of Lignin. In S. Y. Lin & D. W. Dence (Eds.), Methods in Lignin Chemistry (Springer S, pp. 33–61). Berlin, Heidelberg: Springer. crossref
Duong, T. T. T., Baumann, K., & Marschner, P. (2009). Frequent addition of wheat straw residues to soil enhances carbon mineralization rate. Soil Biology and Biochemistry, 41(7), 1475–1482. crossref
Dux, J., Norgrove, L., Hauser, S., Wick, B., & Kühne, R. (2006). Plant leaf residue decomposition, nutrient release and soil enzyme activity. In F. Asch, M. Becker, A. Deininger, & P. Pugalenthi (Eds.), Conference on International Agricultural Research for Development: Properity and poverty in a globalised world – Chalenges for agricultural research (pp. 1–7). Bonn, Germany: University of Bonn. Retrieved from website
Foth, H. D. (1990). Fundamentals of soil science (8th ed.). New York, US : John Wiley & Sons, Inc. Green, C. J., Blackmer, A. M., & Horton, R. (1995). Nitrogen effects on conservation of carbon during corn residue decomposition in soil. Soil Science Society of America Journal, 59(2), 453–459. crossref
Gromikora, N., Yahya, S., & Suwarto. (2014). Permodelan pertumbuhan dan produksi kelapa sawit pada berbagai taraf penunasan pelepah. Jurnal Agronomi Indonesia, 42(3), 228–235. crossref
Henson, I. E., Betitis, T., Tomda, Y., & Chase, L. D. C. (2012). The estimation of frond base biomass (FBB) of oil palm. Journal of Oil Palm Research, 24, 1473–1479. Retrieved from pdf
Irsan, F., Anwar, S., Nugroho, B., & Indriyati, L. T. (2017). Estimation of returned biomass and nutrients in oil palm plantation in one life cycle. IJRDO - Journal of Agriculture and Research, 3(6), 19–32. Retrieved from website
Karberg, N. J., Scott, N. A., & Giardina, C. P. (2008). Methods for estimating litter decomposition. In C. M. Hoover (Ed.), Field Measurements for Forest Carbon Monitoring (pp. 103–111). Dordrecht: Springer. crossref
Khalid, H., Zin, Z. Z., & Anderson, J. M. (2000). Decomposition processes and nutrient release patterns of oil palm residues. Journal of Oil Palm Research, 12(1), 46–63. Retrieved from pdf
Melillo, J. M., Aber, J. D., & Muratore, J. F. (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63(3), 621–626. crossref
Moore, T. R., Trofymow, J. A., Prescott, C. E., Fyles, J., & Titus, B. D. (2006). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems, 9(1), 46–62. crossref
Moradi, A., Teh, C. B. S., Goh, K. J., Husni, M. H. A., & Ishak, C. F. (2014). Decomposition and nutrient release temporal pattern of oil palm residues. Annals of Applied Biology, 164, 208–219. crossref
Mun, H. T. (2009). Weight loss and nutrient dynamics during leaf litter decomposition of quercus mongolica in Mt. Worak national park. Journal of Ecology and Environment, 32(2), 123–127. crossref
Oladoye, A., Ola-Adams, B., Adedire, M., & Agboola, D. (2008). Nutrient dynamics and litter decomposition in Leucaena leucocephala (Lam.) De Wit plantation in the Nigerian derived savanna. West African Journal of Applied Ecology, 13(1), 96–103. crossref
Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44(2), 322–331. crossref
Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Methods of soil analysis, Part 2: Chemical and microbiological properties (2nd ed.). Madison, Wisconsin, USA: American Society of Agronomy, Inc. & Soil Science Society of America, Inc. Retrieved from website
Reshi, Z., & Tyub, S. (2007). Detritus and decomposition in ecosystems. New Delhi: New India Publishing Agency. Retrieved from website
Rosenani, A. B., Basran, R. D., Zaharah, A. R., & Zauyah, S. (1996). A lysimetric study on the effect of N and P fertilizer application on decomposition and nutrient release of oil palm empty fruit bunches. PORIM Bulletin, (32), 1–11. Retrieved from website
Singh, P., Sulaiman, O., Hashim, R., Peng, L. C., & Singh, R. P. (2013). Evaluating biopulping as an alternative application on oil palm trunk using the whiterot fungus Trametes versicolor. International Biodeterioration and Biodegradation, 82, 96–103. crossref
Sung, C. T. B. (2016). Availability, use, and removal of oil palm biomass in Indonesia. Report prepared for the International Council on Clean Transportation. crossref
Swift, M. J., Heal, O. W., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems. Studies in Ecology - Volume 5. Berkeley & Los Angeles: University of California Press. Retrieved from website
Tarigan, B., & Sipayung, T. (2011). Kontribusi perkebunan kelapa sawit dalam perekonomian dan lingkungan hidup Sumatera Utara. Bogor, ID: IPB Press. Retrieved from website
Thaim, T., Rasid, R. A., & Wan Ismail, W. M. S. (2019). Torrefaction of oil palm fronds (OPF) as a potential feedstock for energy production processes. Journal of Environmental Engineering and Landscape Management, 27(2), 64–71 crossref
DOI: http://doi.org/10.17503/agrivita.v41i3.2062
Copyright (c) 2019 UNIVERSITAS BRAWIJAYA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.