Decomposition of Oil Palm Frond and Leaflet Residues

Heru Bagus Pulunggono, Syaiful Anwar, Budi Mulyanto, Supiandi Sabiham

Abstract


Frond and leaflet residues from pruning of oil palm which are applied as mulch on oil palm plantation will decompose and can be source of organic matter and some essential nutrients. Information about how much the released nutrients from the decomposition processes of frond and leaflet of oil palm is limited. The objective of this research was to study the period (two years) patterns of nutrient release and decomposition of frond and leaflet of oil palm at different burial depth (0 to 30 cm) in peat soil. Decomposition of frond and leaflet of oil palm did not have a different pattern in mass loss, chemical content changes of C/N, N content, P content, P released, however, it has different pattern in N released. During two years of decomposition, frond and leaflet lost 88% and 86% of its initial weight and released 51% and 83% of N, also it released P 87% and 93% respectively. Frond and leaflet from pruning of oil palm should be returned to plantation area for one source of nutrients beside fertilizer.

Keywords


Burial depth; Mass loss; Nutrient; Recalcitrant; Residue

Full Text:

PDF

References


Aljuboori, A. H. R. (2013). Oil palm biomass residue in Malaysia: Availability and sustainability. International Journal of Biomass & Renewables, 2(1), 13–18. Retrieved from website

Ariyanti, M., Maxiselly, Y., Rosniawaty, S., & Indrawan, R. A. (2019). Pertumbuhan kelapa sawit belum menghasilkan dengan pemberian pupuk organik asal pelepah kelapa sawit dan asam humat. Jurnal Penelitian Kelapa Sawit, 27(2), 71-82. Retrieved from website

Berg, B., & Staaf, H. (1980). Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition. Ecological Bulletins, (32), 373–390. Retrieved from website

BPS. (2018). Statistik kelapa sawit Indonesia 2017. Jakarta, ID: Badan Pusat Statistik. Retrieved from website

Brady, N. C., & Weil, R. R. (2001). The nature and properties of soils (13th ed.). New Jersey: Prentice Hall.

Dence, C. W. (1992). The Determination of Lignin. In S. Y. Lin & D. W. Dence (Eds.), Methods in Lignin Chemistry (Springer S, pp. 33–61). Berlin, Heidelberg: Springer. crossref

Duong, T. T. T., Baumann, K., & Marschner, P. (2009). Frequent addition of wheat straw residues to soil enhances carbon mineralization rate. Soil Biology and Biochemistry, 41(7), 1475–1482. crossref

Dux, J., Norgrove, L., Hauser, S., Wick, B., & Kühne, R. (2006). Plant leaf residue decomposition, nutrient release and soil enzyme activity. In F. Asch, M. Becker, A. Deininger, & P. Pugalenthi (Eds.), Conference on International Agricultural Research for Development: Properity and poverty in a globalised world – Chalenges for agricultural research (pp. 1–7). Bonn, Germany: University of Bonn. Retrieved from website

Foth, H. D. (1990). Fundamentals of soil science (8th ed.). New York, US : John Wiley & Sons, Inc. Green, C. J., Blackmer, A. M., & Horton, R. (1995). Nitrogen effects on conservation of carbon during corn residue decomposition in soil. Soil Science Society of America Journal, 59(2), 453–459. crossref

Gromikora, N., Yahya, S., & Suwarto. (2014). Permodelan pertumbuhan dan produksi kelapa sawit pada berbagai taraf penunasan pelepah. Jurnal Agronomi Indonesia, 42(3), 228–235. crossref

Henson, I. E., Betitis, T., Tomda, Y., & Chase, L. D. C. (2012). The estimation of frond base biomass (FBB) of oil palm. Journal of Oil Palm Research, 24, 1473–1479. Retrieved from pdf

Irsan, F., Anwar, S., Nugroho, B., & Indriyati, L. T. (2017). Estimation of returned biomass and nutrients in oil palm plantation in one life cycle. IJRDO - Journal of Agriculture and Research, 3(6), 19–32. Retrieved from website

Karberg, N. J., Scott, N. A., & Giardina, C. P. (2008). Methods for estimating litter decomposition. In C. M. Hoover (Ed.), Field Measurements for Forest Carbon Monitoring (pp. 103–111). Dordrecht: Springer. crossref

Khalid, H., Zin, Z. Z., & Anderson, J. M. (2000). Decomposition processes and nutrient release patterns of oil palm residues. Journal of Oil Palm Research, 12(1), 46–63. Retrieved from pdf

Melillo, J. M., Aber, J. D., & Muratore, J. F. (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63(3), 621–626. crossref

Moore, T. R., Trofymow, J. A., Prescott, C. E., Fyles, J., & Titus, B. D. (2006). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems, 9(1), 46–62. crossref

Moradi, A., Teh, C. B. S., Goh, K. J., Husni, M. H. A., & Ishak, C. F. (2014). Decomposition and nutrient release temporal pattern of oil palm residues. Annals of Applied Biology, 164, 208–219. crossref

Mun, H. T. (2009). Weight loss and nutrient dynamics during leaf litter decomposition of quercus mongolica in Mt. Worak national park. Journal of Ecology and Environment, 32(2), 123–127. crossref

Oladoye, A., Ola-Adams, B., Adedire, M., & Agboola, D. (2008). Nutrient dynamics and litter decomposition in Leucaena leucocephala (Lam.) De Wit plantation in the Nigerian derived savanna. West African Journal of Applied Ecology, 13(1), 96–103. crossref

Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44(2), 322–331. crossref

Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Methods of soil analysis, Part 2: Chemical and microbiological properties (2nd ed.). Madison, Wisconsin, USA: American Society of Agronomy, Inc. & Soil Science Society of America, Inc. Retrieved from website

Reshi, Z., & Tyub, S. (2007). Detritus and decomposition in ecosystems. New Delhi: New India Publishing Agency. Retrieved from website

Rosenani, A. B., Basran, R. D., Zaharah, A. R., & Zauyah, S. (1996). A lysimetric study on the effect of N and P fertilizer application on decomposition and nutrient release of oil palm empty fruit bunches. PORIM Bulletin, (32), 1–11. Retrieved from website

Singh, P., Sulaiman, O., Hashim, R., Peng, L. C., & Singh, R. P. (2013). Evaluating biopulping as an alternative application on oil palm trunk using the whiterot fungus Trametes versicolor. International Biodeterioration and Biodegradation, 82, 96–103. crossref

Sung, C. T. B. (2016). Availability, use, and removal of oil palm biomass in Indonesia. Report prepared for the International Council on Clean Transportation. crossref

Swift, M. J., Heal, O. W., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems. Studies in Ecology - Volume 5. Berkeley & Los Angeles: University of California Press. Retrieved from website

Tarigan, B., & Sipayung, T. (2011). Kontribusi perkebunan kelapa sawit dalam perekonomian dan lingkungan hidup Sumatera Utara. Bogor, ID: IPB Press. Retrieved from website

Thaim, T., Rasid, R. A., & Wan Ismail, W. M. S. (2019). Torrefaction of oil palm fronds (OPF) as a potential feedstock for energy production processes. Journal of Environmental Engineering and Landscape Management, 27(2), 64–71 crossref




DOI: http://doi.org/10.17503/agrivita.v41i3.2062

Copyright (c) 2019 UNIVERSITAS BRAWIJAYA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.