Effects of Seed Storage Duration and Matriconditioning Materials on Germination and Seedling Characteristics of Maize

Ramlah Arief, Fauziah Koes, Oom Komalasari


Matriconditioning treatments have been reported to improve seed and seedling qualities of many crops after certain storage periods. The research was conducted to evaluate different matriconditioning substances on seedlings characteristics of seeds that previously stored in different periods. The research was carried out from October 2015 to April 2016 at the Indonesian Cereal Research Institute (ICERI). The experiment was arranged in factorial completely randomized design to facilitate the combination of two factors. The first factor was seed storage period, i.e. 4, 36 and 72 months, while the second factor dealt with matriconditioning subtances, i.e without matriconditioning, sawdust, carbonized rice hull and rice straw. The results showed that matriconditioning treatments improved seed and seedling qualities of the maize seeds derived from different storage periods. Shorter seed storage period produced seedlings with higher percentage of germination, germination rate, seedling dry weight, shoots and roots lenghts and lower EC. Among the tested matriconditioning substances, carbonized rice hull provided more suitable condition to improve seedling qualities in any seed storage period than saw dust and rice straw.


Deterioration; Priming; Quality; Seed; Seedling

Full Text:



AOSA. (2002). Seed vigor testing handbook. Contribution No. 32 to the handbook on seed testing. Association of Official Seed Analysts. Retrieved from https://books.google.co.id/books?id=KDL5cQAACAAJ

Arif, M., Jan, M. T., Marwat, K. B., & Khan, M. A. (2008). Seed priming improves emergence and yield of soybean. Pakistan Journal of Botany, 40(3), 1169–1177. Retrieved from http://www.pakbs.org/pjbot/PDFs/40(3)/PJB40(3)1169.pdf

Bakhtavar, M. A., Afzal, I., Basra, S. M. A., Ahmad, A. U. H., & Noor, M. A. (2015). Physiological strategies to improve the performance of spring maize (Zea mays L.) planted under early and optimum sowing conditions. PLoS ONE, 10(4), e0124441. https://doi.org/10.1371/journal.pone.0124441

Benaseer, S., Ahamed, A. S., & Sujatha, K. (2017). Effect of biopriming on seed quality parameters of blackgram (Vigna mungo L. Hepper.) seeds. Agriculture Update, 12(7), 1794–1799. https://doi.org/10.15740/has/au/12.techsear(7)2017/1794-1799

Borza, G., Barbos, A., Moldovan, G., & Micu, O. (2017). The decline in viability of corn seeds (inbred lines) under influence of the storage duration in “open warehouse.” Agricultura, 101(1–2), 21–26. Retrieved from http://journals.usamvcluj.ro/index.php/agricultura/article/view/12697

Čanak, P., Mirosavljević, M., Ćirić, M., Vujošević, B., Kešelj, J., Stanisavljević, D., & Mitrović, B. (2016). Seed priming as a method for improving maize seed germination parameters at low temperatures. Ratarstvo i Povrtarstvo, 53(3), 106–110. https://doi.org/10.5937/ratpov53-10825

Costa, A. S., Dias, L. S., & Dias, A. S. (2019). Imbibition, germination, and early seedling growth responses of light purple and yellow seeds of red clover to distilled water, sodium chloride, and nutrient solution. Sci, 1(1), 10. https://doi.org/10.3390/sci1010010.v1

Domin, M., Kluza, F., Góral, D., Nazarewicz, S., Kozłowicz, K., Szmigielski, M., & Ślaska-Grzywna, B. (2020). Germination energy and capacity of maize seeds following low-temperature short storage. Sustainability, 12(1), 46. https://doi.org/10.3390/SU12010046

El-Abady, M. I. (2014). Viability of stored maize seed exposed to different periods of high temperature during the artificial drying. Research Journal of Seed Science, 7, 75–86. https://doi.org/10.3923/rjss.2014.75.86

Erinnovita, Sari, M., & Guntoro, D. (2008). Invigorasi benih untuk memperbaiki perkecambahan kacang panjang (Vigna unguiculata Hask. ssp. sesquipedalis) pada cekaman salinitas. Jurnal Agronomi Indonesia, 36(3), 214–220. Retrieved from https://journal.ipb.ac.id/index.php/jurnalagronomi/article/view/1379

Goswami, A. P. (2019). Seed priming: A technique to improve seed performance. International Journal of Chemical Studies, 7(3), 966–971. Retrieved from http://www.chemijournal.com/archives/2019/vol7issue3/PartP/7-2-121-184.pdf

Govender, V., Aveling, T. A. S., & Kritzinger, Q. (2008). The effect of traditional storage methods on germination and vigour of maize (Zea mays L.) from Northern KwaZulu-Natal and Southern Mozambique. South African Journal of Botany, 74(2), 190–196. https://doi.org/10.1016/j.sajb.2007.10.006

Haefele, S. M., Knoblauch, C., Gummert, M., Konboon, Y., & Koyama, S., (2009). Black carbon (biochar) in rice-based systems: Characteristics and opportunities. In Woods, W. I., Teixeira, W. G., Lehmann, J., Steiner, C., Winkler Prins, A., & Rebellato, L. (Eds.), Amazonian Dark Earths: Wim Sombroek’s Vision (pp. 445-463). Netherlands: Springer.

Hasan, A., Abdullah, Y., & Duka, Y. A. (2018). Pengaruh berbagai jenis media matriconditioning terhadap perkecambahan benih terong ungu. Jurnal Biotropikal Sains, 15(1), 9–16. Retrieved from http://ejurnal.undana.ac.id/biotropikal/issue/view/Edisi April 2018/Ali Hasan%2C Yulian Abdullah%2C Yemima A. Duka Horbach, M. A., Dranski, J. A. L., Malavasi, U. C., & de

Matos Malavasi, M. (2018). Physiological quality and seed respiration of primed Jatropha curcas seeds. Acta Botanica Brasilica, 32(1), 63–69. https://doi.org/10.1590/0102-33062017abb0231

Hussein, H. J., Shaheed, A. I., & Yasser, O. M. (2012). Effect of accelerated aging on vigor of local maize seeds in term of electrical conductivity and relative growth rate (RGR). Iraqi Journal of Science, 53(2), 285–291. Retrieved from https://www.iasj.net/iasj?func=fulltext&aId=52975

Ilyas, S. (2006). Review: Seed treatments using matriconditioning to improve vegetable seed quality. Buletin Agronomi, 34(2), 124–132. Retrieved from https://repository.ipb.ac.id/jspui/bitstream/123456789/35542/1/Ilyas.pdf

Ilyas, S., & Suartini, W. (1998). Improving seed quality, seedling growth, and yield of yard-long bean (Vigna unguiculata (L.) Walp.) by seed conditioning and gibberellic acid treatment. In Taylor, A. G., & Xue-Lin, H. (Eds.), Progress in Seed Research (pp. 292-301). Paper presented at Proceeding of The Second International Conference on Seed Science and Technology 1997. Guangzhou, China.

Jafar, M. Z., Farooq, M., Cheema, M. A., Afzal, I., Basra, S. M. A., Wahid, M. A., … Shahid, M. (2012). Improving the performance of wheat by seed priming under saline conditions. Journal of Agronomy and Crop Science, 198(1), 38–45. https://doi.org/10.1111/j.1439-037X.2011.00485.x

Khalid, Z. E. A., Elballa, M. M. A., Jinghua, C., & Zenda, T. (2018). Germination of corn (Zea mays L.) cultivars seed and its relationship to field performance under semi-arid conditions. IOSR Journal of Agriculture and Veterinary Science, 11(6 (Ver. II)), 32–40. Retrieved from https://www.iosrjournals.org/iosr-javs/papers/Vol11-issue6/Version-2/E1106023240.pdf

Khan, A. Z., Shah, T., Khan, S., Rehman, A., Akbar, H., Muhammad, A., & Khalil, S. K. (2017). Influence of seed invigoration techniques on germination and seedling vigor of maize (Zea mays L.). Cercetari Agronomice in Moldova, 50(3), 61-70. https://doi.org/10.1515/cerce-2017-0026

Kurek, K., Plitta-Michalak, B., & Ratajczak, E. (2019). Reactive oxygen species as potential drivers of the seed aging process. Plants, 8(6), 174. https://doi.org/10.3390/plants8060174

Maguire, J. D. (1962). Speed of germination—aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2(2), 176–177. https://doi.org/10.2135/cropsci1962.0011183x000200020033x

Mamun, A. A., Naher, U. A., & Ali, M. Y. (2018). Effect of seed priming on seed germination and seedling growth of modern rice (Oryza sativa L.) varieties. The Agriculturists, 16(1), 34–43. https://doi.org/10.3329/agric.v16i1.37532

Mariucci, G. E. G., Suzukawa, A. K., Braccini, A. L., Scapim, C. A., Lima, L. H. da S., Angelotti, P., … Marteli, D. C. V. (2018). Physiological potential of maize seeds submitted to different treatments and storage periods. Journal of Seed Science, 40(1), 60–66. https://doi.org/10.1590/2317-1545v40n1184456

Miladinov, Z., Balešević-Tubić, S., Đukić, V., Ilić, A., Čobanović, L., Dozet, G., & Merkulov-Popadić, L. (2018). Effect of priming on soybean seed germination parameters. Acta Agriculturae Serbica, 23(45), 15–26. https://doi.org/10.5937/aaser1845015m

Mir-Mahmoodi, T., Ghassemi-Golezani, K., Habibi, D., Paknezhad, F., & Ardekani, M. R. (2011). Effects of priming techniques on seed germination and seedling emergence of maize (Zea mays L.). Journal of Food, Agriculture and Environment, 9(2), 200-202. Retrieved from https://www.wflpublisher.com/Abstract/2088

Oshio, H., Nii, F., & Namioka, H. (1981). Characteristics of kuntan (rice hull charcoal) asoa medium of soilless culture. Journal of the Japanese Society for Horticultural Science, 50(2), 231-238. https://doi.org/10.2503/jjshs.50.231

Pallaoro, D. S., Camili, E. C., Guimarães, S. C., & de Figueiredo e Albuquerque, M. C. (2016). Methods for priming maize seeds. Journal of Seed Science, 38(2), 148–154. https://doi.org/10.1590/2317-1545v38n2161132

Ruliyansyah, A. (2011). Peningkatan performansi benih kacangan dengan perlakuan invigorasi. Jurnal Perkebunan dan Lahan Tropika, 1(1), 13–18. Retrieved from https://jurnal.untan.ac.id/index.php/perkebunan/article/view/26

Sánchez-Linares, L., Gavilanes-Ruíz, M., Díaz-Pontones, D., Guzmán-Chávez, F., Calzada-Alejo, V., Zurita-Villegas, V., … Sánchez-Nieto, S. (2012). Early carbon mobilization and radicle protrusion in maize germination. Journal of Experimental Botany, 63(12), 4513–4526. https://doi.org/10.1093/jxb/ers130

Sarlach, R. S., Sharma, A., & Bains, N. S. (2013). Seed priming in wheat: Effect on seed germination, yield parameters and grain yield. Progressive Research, 8(1), 109–112. Retrieved from https://www.researchgate.net/publication/244478979_Seed_priming_in_wheatEffect_on_seed_germination_yield_parameters_and_grain_yield

Sena, D. V. dos A., Alves, E. U., & de Medeiros, D. S. (2017). Vigor tests to evaluate the physiological quality of corn seeds cv. “Sertanejo.” Ciência Rural, 47(3), e20150705. https://doi.org/10.1590/0103-8478cr20150705

Soleimanzadeh, H. (2013). Effect of seed priming on germination and yield of corn. International Journal of Agriculture and Crop Sciences, 5(4), 366–369. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20133106047

Sonhaji, M. Y., Surahman, M., Ilyas, S., & Giyanto. (2014). Perlakuan benih untuk meningkatkan mutu dan produksi benih serta mengendalikan penyakit bulai pada jagung manis. Jurnal Agronomi Indonesia, 41(3), 242–248. Retrieved from https://journal.ipb.ac.id/index.php/jurnalagronomi/article/view/8103

Sucahyono, D., Sari, M., Surahman, M., & Ilyas, S. (2014). Pengaruh perlakuan invigorasi pada benih kedelai hitam (Glycine soja) terhadap vigor benih, pertumbuhan tanaman, dan hasil. Jurnal Agronomi Indonesia, 41(2), 126–132. Retrieved from https://journal.ipb.ac.id/index.php/jurnalagronomi/article/view/7517

Suleiman, R. A., Rosentrater, K. A., & Bern, C. J. (2013). Effects of deterioration parameters on storage of maize: A review. Journal of Natural Sciences Research, 3(9), 147–165. Retrieved from https://lib.dr.iastate.edu/abe_eng_pubs/447/

Sulewska, H., Śmiatacz, K., Szymańska, G., Panasiewicz, K., Bandurska, H., & Głowicka-Wołoszyn, R. (2014). Seed size effect on yield quantity and quality of maize (Zea mays L.) cultivated in South East Baltic region. Zemdirbyste-Agriculture, 101(1), 35–40. https://doi.org/10.13080/z-a.2014.101.005

Suma, A., Sreenivasan, K., Singh, A. K., & Radhamani, J. (2013). Role of relative humidity in processing and storage of seeds and assessment of variability in storage behaviour in Brassica spp. and Eruca sativa. The Scientific World Journal, 2013, 504141. https://doi.org/10.1155/2013/504141

Sutariati, G. A. K., Madiki, A., & Khaeruni, A. (2014). Integrasi teknik invigorasi benih dengan rizobakteri untuk pengendalian penyakit dan peningkatan hasil tomat. Jurnal Fitopatologi Indonesia, 10(6), 188. https://doi.org/10.14692/jfi.10.6.188

Toklu, F. (2015). Effects of different priming treatments on seed germination properties, yield components and grain yield of lentil (Lens culinaris Medik.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(1), 153–158. https://doi.org/10.15835/nbha4319832

Wambugu, P. W., Mathenge, P. W., Auma, E. O., & VanRheenen, H. A. (2012). Constraints to onfarm maize (Zea mays L.) seed production in Western Kenya: Plant growth and yield. ISRN Agronomy, 2012, 153412. https://doi.org/10.5402/2012/153412

Wang, W., He, A., Peng, S., Huang, J., Cui, K., & Nie, L. (2018). The effect of storage condition and duration on the deterioration of primed rice seeds. Frontiers in Plant Science, 9, 172. https://doi.org/10.3389/fpls.2018.00172

Wiebach, J., Nagel, M., Börner, A., Altmann, T., & Riewe, D. (2020). Age-dependent loss of seed viability is associated with increased lipid oxidation and hydrolysis. Plant Cell and Environment, 43(2), 303–314. https://doi.org/10.1111/pce.13651

Yuniarti, N., & Nurhasybi. (2015). Viability and biochemical content changes in seed storage of jabon putih (Anthocephalus cadamba (Roxb) Miq.). Jurnal Manajemen Hutan Tropika, 21(2), 92–98. https://doi.org/10.7226/jtfm.21.2.92

DOI: http://doi.org/10.17503/agrivita.v42i3.2034

Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.