Illegitimacy Testing of Elaeis guineensis Population Based on Simple Sequence Repeat Markers

Lalu Firman Budiman, Ardha Apriyanto, Adi Pancoro, Sudarsono Sudarsono


Illegitimacy is a factor negatively affecting controlled pollination in Elaeis guineensis breeding programs and it may happen in any step of hybridization processes, starting from early stages of parent selection and labeling to the last stage of the replicated field trial. Availability of method for testing the existence of illegitimacy among progenies of oil palm is beneficial. Four half-sib family populations consisted of 83 individuals were evaluated. Sixteen loci of SSR markers were utilized to genotype plant materials and identify illegitimate individuals. The legitimate parents and illegitimate progenies were evaluated using CERVUS and COLONY softwares. The results showed that the 16 SSR marker loci evaluated were having medium to high PIC values and they were both informative and suitable for parent-offspring analysis. The results also showed that the 16 SSR markers were sufficient for the illegitimacy testing using the COLONY software. Moreover, this study did not find any illegitimate individual among the four progeny populations. The generated SSR marker data were also successfully used to assign and to reconstruct the expected pedigree of the progenies. This can be used as an example of molecular marker utilization to improve the integrity of breeding program of oil palms.


African oil palm; Dura oil palm; Legitimacy testing; Pisifera oil palm; SSR markers

Full Text:



Ajambang, W., Sudarsono, Asmono, D., & Toruan, N. (2012). Microsatellite markers reveal Cameroon’s wild oil palm population as a possible solution to broaden the genetic base in the Indonesia-Malaysia oil palm breeding programs. African Journal of Biotechnology, 11(69), 13244–13249. crossref

Akkaya, M. S., Bhagwat, A. A., & Cregan, P. B. (1992). Length polymorphisms of simple sequence repeat DNA in soybean. Genetics, 132(4), 1131–1139. Retrieved from website

Barcelos, E., de Almeida Rios, S., Cunha, R. N. V., Lopes, R., Motoike, S. Y., Babiychuk, E., … Kushnir, S. (2015). Oil palm natural diversity and the potential for yield improvement. Frontiers in Plant Science, 6, 190. crossref

Billotte, N., Marseillac, N., Risterucci, A.-M., Adon, B., Brottier, P., Baurens, F.-C., … Charrier, A. (2005). Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theoretical and Applied Genetics, 110(4), 754–765. crossref

Billotte, N., Risterucci, A. M., Barcelos, E., Noyer, J. L., Amblard, P., & Baurens, F. C. (2001). Development, characterisation, and acrosstaxa utility of oil palm (Elaeis guineensis Jacq.) microsatellite markers. Genome, 44(3), 413–425. Retrieved from crossref

Budiman, L. F., Apriyanto, A., Pancoro, A. D. I., & Sudarsono, S. (2019). Genetic diversity analysis of Tenera × Tenera and Tenera × pisifera crosses and D self of oil palm (Elaeis guineensis) parental populations originating from Cameroon. Biodiversitas Journal of Biological Diversity, 20(4), 937–949. crossref

Cochard, B., Adon, B., Rekima, S., Billotte, N., De Chenon, R. D., Koutou, A., … Noyer, J. L. (2009). Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding. Tree Genetics and Genomes, 5(3), 493–504. crossref

Corley, R. H. V. (2005). Illegitimacy in oil palm breeding – A review. Journal of Palm Oil Research, 17, 64–69. Retrieved from pdf

Corley, R. H. V. (2009). How much palm oil do we need? Environmental Science & Policy, 12(2), 134–139. crossref

Delseny, M., Laroche, M., & Penon, P. (1983). Detection of sequences with Z-DNA forming potential in higher plants. Biochemical and Biophysical Research Communications, 116(1), 113–120. crossref

Ferreira, M. E., & Grattapaglia, D. (1998). Introdução ao uso de marcadores moleculares em análise genética (3rd ed.). Brasília: EMBRAPA—CENARGEN. crossref

Fujimori, S., Washio, T., Higo, K., Ohtomo, Y., Murakami, K., Matsubara, K., … Tomita, M. (2003). A novel feature of microsatellites in plants: A distribution gradient along the direction of transcription. FEBS Letters, 554(1–2), 17–22. crossref

Hayden, M. J., Nguyen, T. M., Waterman, A., & Chalmers, K. J. (2008). Multiplex-Ready PCR: A new method for multiplexed SSR and SNP genotyping. BMC Genomics, 9, 80. crossref

Illahi, Z., Wiendi, N. M. A., & Sudarsono. (2016). Keragaman genetik kacang Bogor (Vigna subterranean L. Verdc.) berdasarkan marka SSR (Simple Sequence Repeat). Jurnal Agronomi Indonesia, 44(3), 279–285. Retrieved from website

Jones, O. R., & Wang, J. (2009). COLONY: A program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10, 551–555. crossref

Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5), 1099–1106. crossref

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., … Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. crossref

Larekeng, S. H., Maskromo, I., Purwito, A., Mattjik, N. A., & Sudarsono, S. (2015). Penyebaran polen berdasarkan analisis SSR membuktikan penyerbukan. Buletin Palma, 16(1), 77–92. crossref

Larekeng, S. H., Purwito, A., Mattjik, N. A., & Sudarsono, S. (2018). Microsatellite and SNAP markers used for evaluating pollen dispersal on Pati tall coconuts and Xenia effect on the production of “Kopyor” fruits. IOP Conference Series: Earth and Environmental Science, 157, 012042. crossref

Luyindula, N., Mantantu, N., Dumortier, F., & Corley, R. H. V. (2005). Effects of inbreeding on growth and yield of oil palm. Euphytica, 143(1–2), 9–17. crossref

Maskromo, I., Larekeng, S. H., Novarianto, H., & Sudarsono, S. (2017). Xenia negatively affecting kopyor nut yield in Kalianda Tall kopyor and Pati Dwarf kopyor coconuts. Emirates Journal of Food and Agriculture, 28(9), 644–652. crossref

Mohammadi, S. A., & Prasanna, B. M. (2003). Analysis of genetic diversity in crop plants - Salient statistical tools and considerations. Crop Science, 43(4), 1235–1248. crossref

Natawijaya, A., Ardie, S. W., Syukur, M., Maskromo, I., Hartana, A., & Sudarsono, S. (2019). Genetic structure and diversity between and within African and American oil palm species based on microsatellite markers. Biodiversitas, 20(5), 1233-1240. crossref

Oktavia, F., Kuswanhadi, Dinarty, D., Widodo, & Sudarsono. (2017). Genetic diversity and population structure of IRRDB 1981 and Wickham rubber germplasm based on ESTSSR. AGRIVITA Journal of Agricultural Science, 39(3), 239–251. crossref

Purwoko, D., Cartealy, I. C., Tajuddin, T., Dinarti, D., & Sudarsono, S. (2019). SSR identification and marker development for sago palm based on NGS genome data. Breeding Science, 69(1), 18061. crossref

Saghai Maroof, M. A., Biyashev, R. M., Yang, G. P., Zhang, Q., & Allard, R. W. (1994). Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 91(12), 5466–5470. crossref

Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). New York, USA: Cold Spring Harbor Laboratory Press. Retrieved from website

Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18, 233–234. crossref

Shahbandeh, M. (2019). Palm oil consumption worldwide from 2015/2016 to 2019/2020 (in 1,000 metric tons). Statista. Retrieved from website

Sulistiyorini, I., Rubiyo, R., & Sudarsono, S. (2018). Evaluation of clonal uniformity in six superior cacao clones based on SSR marker. Jurnal Tanaman Industri Dan Penyegar, 5(3), 135–144. crossref

Tautz, D. (1989). Hypervariabflity of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 17(16), 6463–6471. crossref

Tautz, D., & Renz, M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 12(10), 4127–4138. crossref

Thongthawee, S., Tittinutchanon, P., & Volkaert, H. (2010). Microsatellites for parentage analysis in an oil palm breeding population. Thai Journal of Genetics, 3(2), 172–181. crossref

Tinche, Asmono, D., Dinarti, D., & Sudarsono. (2014). Keragaman genetik kelapa sawit (Elaeis guineensis Jacq.) populasi Nigeria berdasarkan analisis marka SSR (Simple Sequence Repeats). Buletin Palma, 15(1), 14–23. Retrieved from website



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.