Illegitimacy Testing of Elaeis guineensis Population Based on Simple Sequence Repeat Markers

Lalu Firman Budiman, Ardha Apriyanto, Adi Pancoro, Sudarsono Sudarsono

Abstract


Illegitimacy is a factor negatively affecting controlled pollination in Elaeis guineensis breeding programs and it may happen in any step of hybridization processes, starting from early stages of parent selection and labeling to the last stage of the replicated field trial. Availability of method for testing the existence of illegitimacy among progenies of oil palm is beneficial. Four half-sib family populations consisted of 83 individuals were evaluated. Sixteen loci of SSR markers were utilized to genotype plant materials and identify illegitimate individuals. The legitimate parents and illegitimate progenies were evaluated using CERVUS and COLONY softwares. The results showed that the 16 SSR marker loci evaluated were having medium to high PIC values and they were both informative and suitable for parent-offspring analysis. The results also showed that the 16 SSR markers were sufficient for the illegitimacy testing using the COLONY software. Moreover, this study did not find any illegitimate individual among the four progeny populations. The generated SSR marker data were also successfully used to assign and to reconstruct the expected pedigree of the progenies. This can be used as an example of molecular marker utilization to improve the integrity of breeding program of oil palms.

Keywords


African oil palm; Dura oil palm; Legitimacy testing; Pisifera oil palm; SSR markers

Full Text:

PDF

References


Ajambang, W., Sudarsono, Asmono, D., & Toruan, N. (2012). Microsatellite markers reveal Cameroon’s wild oil palm population as a possible solution to broaden the genetic base in the Indonesia-Malaysia oil palm breeding programs. African Journal of Biotechnology, 11(69), 13244–13249. https://doi.org/10.5897/ajb11.3897

Akkaya, M. S., Bhagwat, A. A., & Cregan, P. B. (1992). Length polymorphisms of simple sequence repeat DNA in soybean. Genetics, 132(4), 1131–1139. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1205234/

Barcelos, E., de Almeida Rios, S., Cunha, R. N. V., Lopes, R., Motoike, S. Y., Babiychuk, E., … Kushnir, S. (2015). Oil palm natural diversity and the potential for yield improvement. Frontiers in Plant Science, 6, 190. https://doi.org/10.3389/fpls.2015.00190

Billotte, N., Marseillac, N., Risterucci, A.-M., Adon, B., Brottier, P., Baurens, F.-C., … Charrier, A. (2005). Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theoretical and Applied Genetics, 110(4), 754–765. https://doi.org/10.1007/s00122-004-1901-8

Billotte, N., Risterucci, A. M., Barcelos, E., Noyer, J. L., Amblard, P., & Baurens, F. C. (2001). Development, characterisation, and acrosstaxa utility of oil palm (Elaeis guineensis Jacq.) microsatellite markers. Genome, 44(3), 413–425. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11444700

Budiman, L. F., Apriyanto, A., Pancoro, A. D. I., & Sudarsono, S. (2019). Genetic diversity analysis of Tenera × Tenera and Tenera × pisifera crosses and D self of oil palm (Elaeis guineensis) parental populations originating from Cameroon. Biodiversitas Journal of Biological Diversity, 20(4), 937–949. https://doi.org/10.13057/biodiv/d200402

Cochard, B., Adon, B., Rekima, S., Billotte, N., De Chenon, R. D., Koutou, A., … Noyer, J. L. (2009). Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding. Tree Genetics and Genomes, 5(3), 493–504. https://doi.org/10.1007/s11295-009-0203-3

Corley, R. H. V. (2005). Illegitimacy in oil palm breeding – A review. Journal of Palm Oil Research, 17, 64–69. Retrieved from http://palmoilis.mpob.gov.my/publications/joprv17june-ms64.pdf

Corley, R. H. V. (2009). How much palm oil do we need? Environmental Science & Policy, 12(2), 134–139. https://doi.org/10.1016/j.envsci.2008.10.011

Delseny, M., Laroche, M., & Penon, P. (1983). Detection of sequences with Z-DNA forming potential in higher plants. Biochemical and Biophysical Research Communications, 116(1), 113–120. https://doi.org/10.1016/0006-291X(83)90388-1

Ferreira, M. E., & Grattapaglia, D. (1998). Introdução ao uso de marcadores moleculares em análise genética (3rd ed.). Brasília: EMBRAPA—CENARGEN. https://doi.org/10.13140/2.1.3757.8881

Fujimori, S., Washio, T., Higo, K., Ohtomo, Y., Murakami, K., Matsubara, K., … Tomita, M. (2003). A novel feature of microsatellites in plants: A distribution gradient along the direction of transcription. FEBS Letters, 554(1–2), 17–22. https://doi.org/10.1016/S0014-5793(03)01041-X

Hayden, M. J., Nguyen, T. M., Waterman, A., & Chalmers, K. J. (2008). Multiplex-Ready PCR: A new method for multiplexed SSR and SNP genotyping. BMC Genomics, 9, 80. https://doi.org/10.1186/1471-2164-9-80

Illahi, Z., Wiendi, N. M. A., & Sudarsono. (2016). Keragaman genetik kacang Bogor (Vigna subterranea L. Verdc.) berdasarkan marka SSR (Simple Sequence Repeat). Jurnal Agronomi Indonesia, 44(3), 279–285. Retrieved from https://journal.ipb.ac.id/index.php/jurnalagronomi/article/view/12787

Jones, O. R., & Wang, J. (2009). COLONY: A program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10, 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x

Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5), 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., … Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Larekeng, S. H., Maskromo, I., Purwito, A., Mattjik, N. A., & Sudarsono, S. (2015). Penyebaran polen berdasarkan analisis SSR membuktikan penyerbukan. Buletin Palma, 16(1), 77–92. https://doi.org/10.21082/bp.v16n1.2015.77-92

Larekeng, S. H., Purwito, A., Mattjik, N. A., & Sudarsono, S. (2018). Microsatellite and SNAP markers used for evaluating pollen dispersal on Pati tall coconuts and Xenia effect on the production of “Kopyor” fruits. IOP Conference Series: Earth and Environmental Science, 157, 012042. https://doi.org/10.1088/1755-1315/157/1/012042

Luyindula, N., Mantantu, N., Dumortier, F., & Corley, R. H. V. (2005). Effects of inbreeding on growth and yield of oil palm. Euphytica, 143(1–2), 9–17. https://doi.org/10.1007/s10681-005-6735-1

Maskromo, I., Larekeng, S. H., Novarianto, H., & Sudarsono, S. (2017). Xenia negatively affecting kopyor nut yield in Kalianda Tall kopyor and Pati Dwarf kopyor coconuts. Emirates Journal of Food and Agriculture, 28(9), 644–652. https://doi.org/10.9755/ejfa.2015-07-552

Mohammadi, S. A., & Prasanna, B. M. (2003). Analysis of genetic diversity in crop plants - Salient statistical tools and considerations. Crop Science, 43(4), 1235–1248. https://doi.org/10.2135/cropsci2003.1235

Natawijaya, A., Ardie, S. W., Syukur, M., Maskromo, I., Hartana, A., & Sudarsono, S. (2019). Genetic structure and diversity between and within African and American oil palm species based on microsatellite markers. Biodiversitas, 20(5), 1233-1240. https://doi.org/10.13057/biodiv/d200501

Oktavia, F., Kuswanhadi, Dinarty, D., Widodo, & Sudarsono. (2017). Genetic diversity and population structure of IRRDB 1981 and Wickham rubber germplasm based on ESTSSR. AGRIVITA Journal of Agricultural Science, 39(3), 239–251. https://doi.org/10.17503/agrivita.v39i3.881

Purwoko, D., Cartealy, I. C., Tajuddin, T., Dinarti, D., & Sudarsono, S. (2019). SSR identification and marker development for sago palm based on NGS genome data. Breeding Science, 69(1), 18061. https://doi.org/10.1270/jsbbs.18061

Saghai Maroof, M. A., Biyashev, R. M., Yang, G. P., Zhang, Q., & Allard, R. W. (1994). Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 91(12), 5466–5470. https://doi.org/10.1073/pnas.91.12.5466

Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). New York, USA: Cold Spring Harbor Laboratory Press. Retrieved from https://www.cabdirect.org/cabdirect/abstract/19901616061

Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18, 233–234. https://doi.org/10.1038/72708

Shahbandeh, M. (2019). Palm oil consumption worldwide from 2015/2016 to 2019/2020 (in 1,000 metric tons). Statista. Retrieved from https://www.statista.com/statistics/274127/world-palm-oilusage-distribution/

Sulistiyorini, I., Rubiyo, R., & Sudarsono, S. (2018). Evaluation of clonal uniformity in six superior cacao clones based on SSR marker. Jurnal Tanaman Industri Dan Penyegar, 5(3), 135–144. https://doi.org/10.21082/jtidp.v5n3.2018.p135-144

Tautz, D. (1989). Hypervariabflity of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 17(16), 6463–6471. https://doi.org/10.1093/nar/17.16.6463

Tautz, D., & Renz, M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 12(10), 4127–4138. https://doi.org/10.1093/nar/12.10.4127

Thongthawee, S., Tittinutchanon, P., & Volkaert, H. (2010). Microsatellites for parentage analysis in an oil palm breeding population. Thai Journal of Genetics, 3(2), 172–181. https://doi.org/10.14456/tjg.2010.1

Tinche, Asmono, D., Dinarti, D., & Sudarsono. (2014). Keragaman genetik kelapa sawit (Elaeis guineensis Jacq.) populasi Nigeria berdasarkan analisis marka SSR (Simple Sequence Repeats). Buletin Palma, 15(1), 14–23. Retrieved from http://ejurnal.litbang.pertanian.go.id/index.php/palma/article/view/5326




DOI: http://doi.org/10.17503/agrivita.v41i3.1969

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.