Response of Meloidogyne javanica to Silver Nanoparticle Liquid from Agricultural Wastes

O. A. Fabiyi, A. O. Claudius-Cole, G. A. Olatunji, D. O. Abubakar, O. A. Adejumo


Plant-parasitic nematodes attack is an important problem on crop production worldwide. Meloidogyne javanica is a potentially damaging pest of several crops. Laboratory studies were conducted to examine the effect of supernatant liquid from the synthesis of silver nanoparticles with agricultural wastes on the survival and hatching of Meloidogyne javanica juveniles and eggs. The experiment consisted of five treatments (carbofuran, corn cobs, rice husk, guinea corn chaff, and distilled water served as control) at three concentrations of 10, 20, and 30%. Each was repeated three times in a complete randomized design. Nematicidal bioassay revealed a consequential (p=0.05) decrease in egg hatch rate in 20 and 30% concentrations of the nanoparticle supernatant liquid. Similarly, percentage mortality increased significantly (p=0.05) in the nano supernatant liquid, with the corncob silver nanoparticle having the highest percentage mortality. These results confirmed that the agricultural waste silver nanoparticle supernatant liquid could be a cost-effective and eco-friendly nematicide.


Bio-pesticide; Environmental pollution; Nematodes; Toxicity; Synthetic nematicides

Full Text:



Abd El-Rahman, A. F., & Tahany G. M., M. (2013). Green synthesis of silver nanoparticle using Eucalyptus globulus leaf extract and its antibacterial activity. Journal of Applied Sciences Research, 9(10), 6437–6440. Retrieved from PDF

Abdellatif, K. F., Abdelfattah, R. H., & El-Ansary, M. S. M. (2016). Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification. Iranian Journal of Biotechnology, 14(4), 250–259. DOI

Asoufi, H. M., Al-Antary, T. M., & Awwad, A. M. (2018). Green route for synthesis hematite (α-Fe2O3) nanoparticles: Toxicity effect on the green peach aphid, Myzus persicae (Sulzer). Environmental Nanotechnology, Monitoring & Management, 9, 107–111. DOI

Atolani, O., & Fabiyi, O. A. (2020). Plant parasitic nematodes management through natural products: Current progress and challenges. In R. Ansari, R. Rizvi, & I. Mahmood (Eds.), Management of Phytonematodes: Recent Advances and Future Challenges (pp. 297–315). Singapore: Springer. DOI

Atolani, O., Fabiyi, O. A., & Olatunji, G. A. (2014). Isovitexin from Kigelia pinnata, a potential ecofriendly nematicidal agent. Tropical Agriculture, 91(2), 67–74. Retrieved from website

Atolani, O., Fabiyi, O. A., & Olatunji, G. A. (2015). Nematicidal isochromane glycoside from Kigelia pinnata leaves. Acta Agriculturae Slovenica, 104(1), 25–31. Retrieved from website

Bekhiet, M. A., Kella, A. M., Khalil, A. E., & Tohamy, A. A. (2010). Interaction between root-knot nematode, Meloidogyne incognita and the bacterium, Ralstonia solanacearum on potato. Journal of Plant Protection and Pathology, 1(7), 505–519. Retrieved from website

Coyne, D. L., Nicol, J. M., & Claudius-Cole, B. (2014). Practical plant nematology: A field and laboratory guide (2nd ed.). Cotonou, Benin: SP-IPM Secretariat, International Institute of Tropical Agriculture (IITA). Retrieved from PDF

de Oliveira Silva, J., Santana, M. V., Freire, L. L., da Silva Ferreira, B., & da Rocha, M. R. (2017). Biocontrol agents in the management of Meloidogyne incognita in tomato. Ciência Rural, 47(10), e20161053. DOI

Fabiyi, O. A. (2018). Management of Meloidogyne incognita infected tomato plants with agricultural wastes. Bulletin of the Institute of Tropical Agriculture, Kyushu University, 41, 15–20. DOI

Fabiyi, O. A. (2020). Growth and yield response of groundnut [Arachis hypogaea (Linn.)] under Meloidogyne incognita infection to furfural synthesised from agro-cellulosic materials. Journal of Tropical Agriculture, 58(2), 241–245. Retrieved from website

Fabiyi, O. A., & Olatunji, G. A. (2018). Application of green synthesis in nano particles preparation: Ficus mucoso extracts in the management of Meloidogyne incognita infecting groundnut Arachis hypogea. Indian Journal of Nematology, 48(1), 13–17. Retrieved from website

Fabiyi, O. A., Alabi, R. O., & Ansari, R. A. (2020). Nanoparticles’ synthesis and their application in the management of phytonematodes: An overview. In R. Ansari, R. Rizvi, & I. Mahmood (Eds.), Management of Phytonematodes: Recent Advances and Future Challenges (pp. 125–140). Singapore: Springer. DOI

Fabiyi, O. A., Olatunji, G. A., & Saadu, A. O. (2018). Suppression of Heterodera sacchari in rice with agricultural waste-silver nano particles. Journal of Solid Waste Technology and Management, 44(2), 87–91. DOI

Fabiyi, O. A., Saliu, O. D., Claudius-cole, A. O., Olaniyi, I. O., Oguntebi, O. V., & Olatunji, G. A. (2020). Porous starch citrate biopolymer for controlled release of carbofuran in the management of root knot nematode Meloidogyne incognita. Biotechnology Reports, 25, e00428. DOI

Khan, M. R., & Rizvi, T. F. (2014). Nanotechnology: Scope and application in plant disease management. Plant Pathology Journal, 13(3), 214–231. DOI

Khan, M., Khan, M., Adil, S. F., Tahir, M. N., Tremel, W., Alkhathlan, H. Z., … Siddiqui, M. R. H. (2013). Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. International Journal of Nanomedicine, 8, 1507–1516. DOI

Lee, H. V., Hamid, S. B. A., & Zain, S. K. (2014). Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. The Scientific World Journal, 2014, 631013. DOI

López-Gómez, M., Flor-Peregrín, E., Talavera, M., & Verdejo-Lucas, S. (2015). Suitability of zucchini and cucumber genotypes to populations of Meloidogyne arenaria, M. incognita, and M. javanica. Journal of Nematology, 47(1), 79–85. Retrieved from website

Perry, R. N., Moens, M., & Starr, J. L. (Eds.). (2009). Root-knot nematodes. CABI. Retrieved from website

Ramasubburayan, R., Sumathi, S., Prakash, S., Ramkumar, V. S., Titus, S., Immanuel, G., & Palavesam, A. (2017). Synthesis of nano silver by a marine epibiotic bacterium Bacillus vallismortis and its potent ecofriendly antifouling properties. Environmental Nanotechnology, Monitoring & Management, 8, 112–120. DOI

Ravindran, R., Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). A review on bioconversion of agro-industrial wastes to industrially important enzymes. Bioengineering, 5(4), 93. DOI

Sameen, A., Fathima, S., Ramlal, S., Kumar, S., & Khanum, F. (2014). Nanopackaging of silver using spice extract and their characterization. Science, Technology and Arts Research Journal, 3(3), 52–56. DOI

Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E. F. C., Jeyakumar, N., & Dhanaraj, S. A. (2011). Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society, 15(2), 113–120. DOI

Wesemael, W. M. L., Taning, L. M., Viaene, N., & Moens, M. (2014). Life cycle and damage of the rootknot nematode Meloidogyne minor on potato, Solanum tuberosum. Nematology, 16(2), 185–192. DOI

Zahir, A. A., Chauhan, I. S., Bagavan, A., Kamaraj, C., Elango, G., Shankar, J., … Singh, N. (2014). Synthesis of nanoparticles using Euphorbia prostrata extract reveals a shift from apoptosis to G0/G1 arrest in Leishmania donovani. Journal of Nanomedicine & Nanotechnology, 05(04), 1–12. DOI


Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.