Antifungal Activities of Sweet Basil (Ocimum basilicum L.) Aqueous Extract Against Sclerotium rolfsii, Causal Agent of Damping-Off on Tomato Seedling

Cipto Nugroho, Eka Mirnia, Christian Joseph R. Cumagun

Abstract


The study aims to evaluate the effectiveness of sweet basil aqueous extract against Sclerotium rolfsii in-vitro and damping-off on tomato seedling in-vivo. The sweet basil leaves were obtained from a commercial market in Los Banos, Philippines. The leaves were rinsed by water and then air dried. The dried leaves were ground using a domestic blender and 10 grams of this material was extracted using 100 ml of sterile distilled water (1:10 w/v) and 0.01 ml absolute methanol. The mixture was kept for 48 hours at room temperature. The solution was strained by a Whatman filter paper No. 1, then the extract was stored at 4°C. The effectiveness of sweet basil extract was determined in-vitro by measuring the mycelial growth inhibition of S.rolfsii and in-vivo by the percentage of disease incidence on tomato seedlings. The result showed that sweet basil extract was effective to inhibit the mycelial growth (33.35%). However, the effectiveness of water extract of sweet basil was considered ineffective for reducing disease incidence on the inoculated tomato seedlings, i.e. 46.67%-60%, similar to benomyl after the inoculation. Further investigation is needed to find out an effective formula of O. basilicum leaf extract which is stable and prolonged persistence for controlling S. rolfsii.

Keywords


botanical pesticide; damping-off; Ocimum bacilicum; Sclerotium rolfsii

Full Text:

PDF

References


Abdollahi, A., Hassani, A., Ghosta, Y., Meshkatalsadat, M. H., & Shabani, R. (2011). Screening of antifungal properties of essential oils extracted from sweet basil, fennel, summer savory and thyme against postharvest phytopathogenic fungi. Journal of Food Safety, 31(3), 350–356. http://doi.org/10.1111/j.1745-4565.2011.00306.x

Amini, J., Farhang, V., Javadi, T., & Nazemi, J. (2016). Antifungal effect of plant essential oils on controlling Phytophthora species. Plant Pathology Journal, 32(1), 16–24. http://doi.org/10.5423/PPJ.OA.05.2015.0091

Bansod, S., & Rai, M. (2008). Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World Journal of Medical Sciences, 3(2), 81–88. Retrieved from https://pdfs.semanticscholar.org/1a9b/b5ee5aa0298a958c58fa651015494ff241ee.pdf

Bhardwaj, S. K. (2012). Evaluation of plant extracts as antifungal agents against Fusarium solani (Mart.) Sacc. World Journal of Agricultural Sciences, 8(4), 385. Retrieved from http://connection.ebscohost.com/c/articles/88928218/evaluation-plant-extracts-as-antifungal-agents-against-fusarium-solani-mart-sacc

Carović-Stanko, K., Orlić, S., Politeo, O., Strikić, F., Kolak, I., Milos, M., & Satovic, Z. (2010). Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chemistry, 119(1), 196–201. http://doi.org/10.1016/j.foodchem.2009.06.010

Colpas, F. T., Schwan-estrada, K. R. F., Stangarlin, J. R., De Lurdes, M., Scapim, C. A., & Bonaldo, S. M. (2009). Induction of plant defense responses by Ocimum gratissimum L. (Lamiaceae) leaf extracts. Summa Phytopathologica, 35(3), 191–195. http://doi.org/10.1590/S0100-54052009000300005

Daferera, D. J., Ziogas, B. N., & Polissiou, M. G. (2003). The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Protection, 22(1), 39–44. http://doi.org/10.1016/S0261-2194(02)00095-9

Dambolena, J. S., Zunino, M. P., López, A. G., Rubinstein, H. R., Zygadlo, J. A., Mwangi, J. W., … Kariuki, S. T. (2010). Essential oils composition of Ocimum basilicum L. and Ocimum gratissimum L. from Kenya and their inhibitory effects on growth and fumonisin production by Fusarium verticillioides. Innovative Food Science and Emerging Technologies, 11(2), 410–414. http://doi.org/10.1016/j.ifset.2009.08.005

Danesi, F., Elementi, S., Neri, R., Maranesi, M., D’antuono, L. F., & Bordoni, A. (2008). Effect of cultivar on the protection of cardiomyocytes from oxidative stress by essential oils and aqueous extracts of basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry, 56(21), 9911–9917. http://doi.org/10.1021/jf8018547

De Curtis, F., Lima, G., Vitullo, D., & De Cicco, V. (2010). Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Protection, 29(7), 663–670. http://doi.org/10.1016/j.cropro.2010.01.012

El-Nagar, A.A.A.A., Sabry, A.M.B., & Yassin, M.A. 2013. Virulence and host range of Sclerotium rolfsii and S. cepivorum. J. Pure Appl. Microbio. 7(3), 1693-1705

FAO. (2015). Production of tomato. Retrieved from http://www.fao.org/faostat/en/#data/QC

Flores-Moctezuma, H. E., Montes-Belmont, R., Jimenez-Perez, A., & Nava-Juarez, R. (2006). Pathogenic diversity of Sclerotium rolfsii isolates from Mexico, and potential control of southern blight through solarization and organic amendments. Crop Protection, 25, 195-201. https://doi.org/10.1016/j.cropro.2005.04.007

Gurjar, M. S., Ali, S., Akhtar, M., & Singh, K. S. (2012). Efficacy of plant extracts in plant disease management. Agricultural Sciences, 3(3), 425–433. http://doi.org/10.4236/as.2012.33050

Hasegawa, Y., Tajima, K., Toi, N., & Sugimura, Y. (1997). Characteristic components found in the essential oil of Ocimum basilicum L. Flavour and Fragrance Journal, 12(3), 195–200. http://doi.org/10.1002/(SICI)1099-1026(199705)12:3<195::AID-FFJ632>3.0.CO;2-O

Hossain, M. A., Kabir, M. J., Salehuddin, S. M., Rahman, S. M. M., Das, A. K., Singha, S. K., … Rahman, A. (2010). Antibacterial properties of essential oils and methanol extracts of sweet basil Ocimum basilicum occurring in Bangladesh. Pharmaceutical Biology, 48(5), 504–511. http://doi.org/10.3109/13880200903190977

Hussain, A. I., Anwar, F., Hussain Sherazi, S. T., & Przybylski, R. (2008). Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry, 108(3), 986–995. http://doi.org/10.1016/j.foodchem.2007.12.010

Keyser, H. A., & Ferreira, J. H. S. (2017). Chemical and biological control of Sclerotium rolfsii in grapevine nurseries. South African Journal of Enology and Viticulture, 9(1), 43–44. http://doi.org/10.21548/9-1-2309

Kocic-Tanackov, S., Dimic, G., Levic, J., Tanackov, I., & Tuco, D. (2011). Antifungal activities of basil (Ocimum basilicum L.) extract on Fusarium species. African Journal of Biotechnology, 10(50), 10188–10195. http://doi.org/10.5897/AJB11.1330

Kumar, A., Shukla, R., Singh, P., & Dubey, N. K. (2010). Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. Food and Chemical Toxicology, 48(2), 539-543. https://doi.org/10.1016/j.fct.2009.11.028

Mullen, J. (2001). Southern blight, Southern stem blight, white mold. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2001-0104-01

Narayana, K. R., Reddy, M. S., Chaluvadi, M. R., & Krishna, D. R. (2001). Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian Jorunal of Pharmacology, 33, 2–16. Retrieved from http://www.ijp-online.com/article.asp?issn=0253-7613;year=2001;volume=33;issue=1;spage=2;epage=16;aulast=Raj;type=0

Nashwa, S. M. A., & Abo-Elyou, K. A. M. (2012). Evaluation of various plant extracts against the early blight disease of tomato plants under greenhouse and field conditions. Plant Protection Science, 48(2), 74–79. http://doi.org/10.17221/14/2011-PPS

Nychas, G. J. E. (1995). Natural antimicrobials from plants. In G. W. Gould (Ed.), New methods of food preservation (pp. 58-89). Boston, MA: Springer. https://doi.org/10.1007/978-1-4615-2105-1_4

Oxenham, S. K., Svoboda, K. P., & Walters, D. R. (2005). Antifungal activity of the essential oil of basil (Ocimum basilicum). Journal of Phytopathology, 153(3), 174–180. http://doi.org/10.1111/j.1439-0434.2005.00952.x

Pavela, R. (2014). Limitation of plant biopesticides. In D. Singh (Ed.), Advances in plant biopesticides (pp. 347-359). New Delhi: Springer. https://doi.org/10.1007/978-81-322-2006-0_17

Piyo, A., Udomsilp, J., Khang-Khun, P., & Thobunluepop, P. (2009). Antifungal activity of essential oils from Basil (Ocimum basilicum Linn.) and Sweet Fennel (Ocimum gratissimum Linn.): alternative strategies to control pathogenic fungi in organic rice. Asian Journal of Food and Agro-Industry, 2(Special Issue), S2–S9. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20123113813

Punja, Z. K. (1985). The biology, ecology, and control of Sclerotium rolfsii. Ann. Rev. Phytopathol, 23:97-127. https://doi.org/10.1146/annurev.py.23.090185.000525

Punja, Z. K. (1988). Sclerotium (Athelia) rolfsii, a pathogen of many plant species. In: G. S. Sidhu (Ed.), Genetics of plant pathogenic fungi. London: Academic Press. 6: 523–534. https://doi.org/10.1016/B978-0-12-033706-4.50039-6

Rangarani, A., Rajan, C. P. D., Harathi, P. N., Bhaskar, B., & Sandhya, Y. (2017). Evaluation of fungicides and heribicides on Sclerotium rolfsii, incitant of stem rot diseases in groundnut (Arachis hypogeal L.). International Journal of Pure & Applied Bioscience, 5(3), 92–97. http://doi.org/10.18782/ 2320 - 7051.3040

Sanni, S., Onyeyili, P. A., & Sanni, F. S. (2008). Phytochemical analysis, elemental determination and some in vitro antibacterial activity of Ocimum basilicum L. leaf extracts. Research Journal of Phytochemistry, 2(2), 77–83. http://doi.org/10.3923/rjphyto.2008.77.83

Sethi, S., Prakash, O., Chandra, M., Punetha, H., & Pant, A. K. (2013). Antifungal activity of essential oils of some Ocimum species collected from different locations of Uttarakhand. Indian Journal of Natural Products and Resources, 4(4), 392–397. Retrieved from http://nopr.niscair.res.in/handle/123456789/26039

Simon, J.E., Morales, M.R., Phippen, W.B., Vieira, R.F., & Zhigang, H. 1999. Basil: A Source of aroma compounds and a popular culinary and ornamental herb. Reprinted from: Perspectives on new crops and new uses. J. Janick (ed.), ASHS Press, Alexandria, VA. P: 499-505

Shirazi, M. T., Gholami, H., Kavoosi, G., Rowshan, V., & Tafsiry, A. (2014). Chemical composition, antioxidant, antimicrobial and cytotoxic activities of Tagetes minuta and Ocimum basilicum essential oils. Food Science and Nutrition, 2(2), 146–155. http://doi.org/10.1002/fsn3.85

Valencia, L. D. C., Castro, S. D., Pascual, C. B., & Magdalita, P. M. (2011). Lemongrass [Cymbopogon citratus (DC.) Stapf.] oil: Potential biocontrol agent against major fungal pathogens of gumamela (Hibiscus rosasinensis L.). Philippine Journal of Crop Science, 36(3), 70–75. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20123043719

Velluti, A., Sanchis, V., Ramos, A. J., Egido, J., & Marín, S. (2003). Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. International Journal of Food Microbiology, 89(2–3), 145–154. http://doi.org/10.1016/S0168-1605(03)00116-8

Vieira, P. R. N., de Morais, S. M., Bezerra, F. H. Q., Travassos Ferreira, P. A., Oliveira, Í. R., & Silva, M. G. V. (2014). Chemical composition and antifungal activity of essential oils from Ocimum species. Industrial Crops and Products, 55, 267–271. http://doi.org/10.1016/j.indcrop.2014.02.032

Vineela, D. R. S., Beura, S. K., Dhal, A., Swain, S. K., & Sethi, D. (2017). Efficacy of chemicals, bio-agents and their compatibility in management of stem rot disease of groundnut. International Journal of Chemical Studies, 5(5), 443–446. Retrieved from http://www.chemijournal.com/archives/2017/vol5issue5/PartG/5-5-42-122.pdf

Wong, S. P., Leong, L. P., & William Koh, J. H. (2006). Antioxidant activities of aqueous extracts of selected plants. Food Chemistry, 99(4), 775–783. http://doi.org/10.1016/j.foodchem.2005.07.058

Yahyazadeh, M., Omidbaigi, R., Zare, R., & Taheri, H. (2008). Effect of some essential oils on mycelial growth of Penicillium digitatum Sacc. World Journal of Microbiology and Biotechnology, 24(8), 1445–1450. http://doi.org/10.1007/s11274-007-9636-8




DOI: http://doi.org/10.17503/agrivita.v41i1.1920

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.