Genetic and Leaf Characteristic Diversity on 10 Mutant Progenies of Patchouli (Pogostemon cablin) Provide Insights to Selection Strategies

Muhammad Tahir, Dewi Riniarti, Ersan Ersan, Jakty Kusuma


The importance of patchouli plants to produce essential oil has established this medicinal herb as one of the Indonesia’s main economic contributor. To date, Indonesia can only provide 5 varieties i.e. Sidikalang, Tapak Tuan, Lhokseumawe, Patchoulina 1 and Patchoulina 2. In order to increase national patchouli production, several efforts needs to be done by providing new superior patchouli lines. This experiment was undertaken to reveal diversity of mutant progenies derived from gamma ray irradiation in patchouli. Six SSR primers were used to determine genetic diversity on MV3 generation of the mutants. Molecular analysis revealed a moderate to high polymorphism based on tested primers, which amplified 73 bands, and resulting of 0.705 PIC value. Dendrogram analysis based on Euclidean dissimilarity showed broad diversity that ranged from 0.23 to 0.82. Phenotypic tree gave clear separation that all mutant clones were clustered into three different group, with Eucledian dissimilarity coefficient ranging from 0.02 to 0.13. This report indicates that Patchouli vegetatively-propagated mutants were able to maintain their variability continuously from their parental lines (M0). Furthermore, our findings offer comprehensive information on breeding strategies of patchouli plants, giving an opportunity to assess important traits at early generation.


diversity; genotyping; patchouli; pogostemon

Full Text:



Bernardo, R. (2003). On the effectiveness of early generation selection in self-pollinated crops. Crop Science, 43(3), 1558–1560. crossref

de Figueiredo, I. C. R. , Pinto, C. A. B. P., Ribeiro, G. H. M. R., de Oliveira Lino, L., Lyra, D. H., & Moreira, C. M. (2015). Efficiency of selection in early generations of potato families with a view toward heat tolerance. Crop Breeding and Applied Biotechnology, 15(4), 210–217. crossref

De Pasquale, F., Siragusa, M., Abbate, L., Tusa, N., De Pasquale, C., & Alonzo, G. (2006). Characterization of five sour orange clones through molecular markers and leaf essential oils analysis. Scientia Horticulturae, 109(1), 54–59. crossref

De Vetten, N., Wolters, A. M., Raemakers, K., van der Meer, I., ter Stege, R., Heeres, E., … Visser, R. (2003). A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nature Biotechnology, 21, 439–442. crossref

Eduardo, I., Chietera, G., Pirona, R., Pacheco, I., Troggio, M., Banchi, E., … Pozzi, C. (2013). Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genetics & Genomes, 9(1), 189–204. crossref

FAO. (2017). FAOSTAT: Crops and livestock products. Retrieved September 7, 2017, from website

Fu, H.-W., Li, Y.-F., & Shu, Q.-Y. (2008). A revisit of mutation induction by gamma rays in rice (Oryza sativa L.): implications of microsatellite markers for quality control. Molecular Breeding, 22(2), 281–288. crossref

He, Y., Xiao, H., Deng, C., Xiong, L., Yang, J., & Peng, C. (2016). The complete chloroplast genome sequences of the medicinal plant Pogostemon cablin. International Journal of Molecular Sciences, 17(6), 820. crossref

Huang, H. R., Wu, W., Zhang, J. X., Wang, L. J., Yuan, Y. M., & Ge, X. J. (2016). A genetic delineation of Patchouli (Pogostemon cablin) revealed by specific-locus amplified fragment sequencing. Journal of Systematics and Evolution, 54(5), 491–501. crossref

Indonesian Ministry of Agriculture. (2015). Basis data statistik pertanian. Retrieved from website

Indonesian Ministry of Agriculture. (2017). Basis data statistik pertanian. Retrieved from website

Kusuma, H. S., & Mahfud, M. (2017). The extraction of essential oils from patchouli leaves (Pogostemon cablin Benth) using a microwave air-hydrodistillation method as a new green technique. RSC Advances, 7, 1336–1347. crossref

Kusuma, J., Ahsan, M. Z., Setiawan, W., Abdullah, K., & Tahir, M. (2018). SSR-based diversity of domesticated and local cotton (Gossypium Spp.) populations collected in Indonesia. International Journal of Agriculture and Biology, 20(9), 2019–2024. crossref

Labra, M., Miele, M., Ledda, B., Grassi, F., Mazzei, M., & Sala, F. (2004). Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Science, 167(4), 725–731. crossref

Lal, M., Pandey, S. K., Dutta, S., Munda, S., Baruah, J., & Paw, M. (2018). Identification of high herbage and oil yielding variety (Jor Lab P-1) of Pogostemon cablin (Blanco) Benth through mutation breeding. Journal of Essential Oil Bearing Plants, 21(1), 131–138. crossref

Li, C.-G., Wu, Y.-G., & Guo, Q.-S. (2011). Floral and pollen morphology of Pogostemon cablin (Lamiaceae) from different habitats and its taxonomic significance. Procedia Engineering, 18, 295–300. crossref

Mo, X. L., Zeng, Q. Q., Huang, S. S., Chen, Y. Z., & Yan, Z. (2012). The protoplasts isolation and culture of Pogostemon cablin cv. Shipanensis. Guihaia, 32(5), 669–673. Retrieved from website

National Horticulture Board. (2014). Patchouli. Retrieved from website

Nuryani, Y. (2004). Karakteristik minyak nilam hasil fusi protoplas antara nilam Aceh dengan nilam Jawa. Buletin Penelitian Tanaman Rempah Dan Obat, 15(2), 1–8. Retrieved from website

Ouyang, P., Kang, D., Mo, X., Tian, E., Hu, Y., & Huang, R. (2018). Development and characterization of high-throughput est-based ssr markers for Pogostemon cablin using transcriptome sequencing. Molecules, 23(8). crossref

Paul, A., Thapa, G., Basu, A., Mazumdar, P., Kalita, M. C., & Sahoo, L. (2010). Rapid plant regeneration, analysis of genetic fidelity and essential aromatic oil content of micropropagated plants of Patchouli, Pogostemon cablin (Blanco) Benth. - An industrially important aromatic plant. Industrial Crops and Products, 32(3), 366–374. crossref

Pharmawati, M., & Candra, I. P. (2015). Genetic diversity of patchouli cultivated in Bali as detected using ISSR and RAPD markers. Biodiversitas, 16(2), 132–138. crossref

Ramya, H. G., Palanimuthu, V., & Rachna, S. (2013). An introduction to patchouli (Pogostemon cablin Benth.) - A medicinal and aromatic plant: It’s importance to mankind. Agricultural Engineering International: CIGR Journal, 15(2), 243–250. Retrieved from website

Ravindra, N. S., Ramesh, S. I., Gupta, M. K., Jhang, T., Shukla, A. K., Darokar, M. P., & Kulkarni, R. N. (2012). Evaluation of somaclonal variation for genetic improvement of patchouli (Pogostemon patchouli), an exclusively vegetatively propagated aromatic plant. Journal of Crop Science and Biotechnology, 15(1), 33–39. crossref

Sandes, S. S., Pinheiro, J. B., Zucchi, M. I., Monteiro, M., Arrigoni-Blank, M. F., & Blank, A. F. (2013). Development and characterization of microsatellite primers in Pogostemon cablin (Lamiaceae). Genetics and Molecular Research, 12(3), 2837–2840. crossref

Sandes, S. S., Zucchi, M. I., Pinheiro, J. B., Bajay, M. M., Batista, C. E. A., Brito, F. A., … Blank, A. F. (2016). Molecular characterization of patchouli (Pogostemon spp) germplasm. Genetics and Molecular Research, 15(1), gmr7458. crossref

Singh, R., Singh, M., Srinivas, A., Rao, E. V. S. P., & Puttanna, K. (2015). Assessment of organic and inorganic fertilizers for growth, yield and essential oil quality of industrially important plant patchouli (Pogostemon cablin) (blanco) benth. Journal of Essential Oil Bearing Plants, 18(1), 1–10. crossref

Swamy, M. K., & Sinniah, U. R. (2016). Patchouli (Pogostemon cablin Benth.): Botany, agrotechnology and biotechnological aspects. Industrial Crops and Products, 87, 161–176. crossref

Tahir, M., & Rofiq, M. (2013). Variabilitas genetik dan heritabilitas nilam Aceh lokal Lampung. Paper presented at National Seminar of SATEK V, Universitas Lampung. 19-20 November 2013 (pp. 234-241). Lampung.

Tahir, M., Ersan, Riniarti, D., & Kusuma, J. (2018). Cytological differences of MV3 patchouli plants (Pogostemon cablin Benth.) derived from gamma ray-irradiation. Bioscience Research, 15(3), 1433–1439. Retrieved from pdf

Vieira, R. F., Grayer, R. J., Paton, A., & Simon, J. E. (2001). Genetic diversity of Ocimum gratissimum L. based on volatile oil constituents, flavonoids and RAPD markers. Biochemical Systematics and Ecology, 29(3), 287–304. crossref

Wicaksana, N., Gilani, S. A., Ahmad, D., Kikuchi, A., & Watanabe, K. N. (2011). Morphological and molecular characterization of underutilized medicinal wild ginger (Zingiber barbatum Wall.) from Myanmar. Plant Genetic Resources, 9(4), 531–542. crossref

Wu, L., Wu, Y., Guo, Q., Li, S., Zhou, K., & Zhang, J. (2011). Comparison of genetic diversity in Pogostemon cablin from China revealed by RAPD, morphological and chemical analyses. Journal of Medicinal Plant Research, 5(18), 4549–4559. Retrieved from pdf

Yan, H.-J., Xiong, Y., Zhang, H.-Y., & He, M.-L. (2016). In vitro induction and morphological characteristics of octoploid plants in Pogostemon cablin. Breeding Science, 66(2), 169–174. crossref

Yang, R. C. (2009). When is early generation selection effective in self-pollinated crops? Crop Science, 49(6), 2065–2070. crossref


Copyright (c) 2019 Universitas Brawijaya

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.