Combined Application of Bio-PF and Synthetic Fungicide Suppress Soil Borne Disease Caused by Cylindrocladium sp. in Leather Leaf

Hanudin Hanudin, Wakiah Nuryani, Evi Silvia Yusuf, Kurniawan Budiarto


An evaluation of formulated Bio-PF with the active ingredient of Pseudomonas fluorescens to reduce synthetic fungicide usage in controlling soil borne disease in leather leaf fern under different shelters was studied. The research was conducted at the experimental field of the Indonesian Ornamental Crops Research Institute (IOCRI) from January to December 2015. Different concentrations of Bio-PF were singly and/nor alternately applied with two different synthetic fungicides were applied on leather leaf plants under UV plastic + 70% black-net and 70% black-net shelters. The results showed that the average disease intensity was higher in 70% black-net shelter. Weekly alternate-application of Bio-PF 5 + Carbendazim & Mancozeb and single Carbendazim & Mancozeb gave lower disease intensity than other treatments with the highest percentage of suppression. These two treatments also improved yield in terms of number and proportion of the preferred grade of harvested leaves. Combined Bio-PF 5 + Carbendazim & Mancozeb gave longer vase life and the application reduced synthetic fungicide usage in controlling the respected disease. In term of synthetic fungicides, Carbendazim & Mancozeb gave more consistent effects on disease suppression, plant growth and foliage production than Asilbensolar & Mancozeb.


Cut Foliage; Cylindrocladium sp; Fungicide; Pseudomonas fluorescens; Ruhmora adiantiformis

Full Text:



Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 26(1), 1–20.

Alhadi, F. (2002). Strategi pengembangan usaha tanaman hias daun pakis (Leather Leaf Fern) untuk ekspor pada PT. Xyz, Kab. Magelang, Jawa Tengah. Institut Pertanian Bogor. Retrieved from

Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., & Smith, D. L. (2018). Plant growthpromoting rhizobacteria: Contex, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9 : 1473.,2018.01473

Boza, S., & Muñoz, J. (2017). Factors underlying sanitary and phytosanitary regulation for food and agricultural imports notified by WTO members. The Journal of International Trade & Economic Development, 26(6), 712–723.

Broughton, D. A., & McAdam, J. H. (2003). The current status and distribution of the Falkland islands Pteridophyte flora. Fern Gazette, 17(1), 21–38. Retrieved from

Chase, A. R. (1982). Control of Cylindrocladium root rot of Spathiphyllum. Procceding of Florida State Horticultural Society, 95, 139–141. Retrieved from (CHASE).pdf

Choi, O., Kim, J., Kim, J.-G., Jeong, Y., Moon, J. S., Park, C. S., & Hwang, I. (2007). Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiology, 146(2), 657–668.

Favero, B. T., Carmello, Q. A. C., & Dias, G. M. (2012). Vase life of new tropical cut foliage: Cordyline terminalis. Acta Horticulturae, 945, 351–356.

Ganeshan, G., & Kumar, A. M. (2005). Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. Journal of Plant Interactions, 1(3), 123–134.

Geat, N., Singh, D., & Khirbat, S. K. (2016). Effect of nonconventional chemicals and synthetic fungicide on biochemical characteristics of chilli against fruit rot pathogen Colletotrichum capsici. Journal of Plant Pathology & Microbiology, 7(1), 1–5.

Graça, R. N., Alfenas, A. C., Maffia, L. A., Titon, M., Alfenas, R. F., Lau, D., & Rocabado, J. M. A. (2009). Factors influencing infection of eucalypts by Cylindrocladium pteridis. Plant Pathology, 58(5), 971–981.

Gusri, S. S., Rahmanta, & Rujiman. (2014). Analisis pengaruh usahatani tanaman hias terhadap pengembangan wilayah di Kecamatan Tanjung Morawa Kabupaten Deli Serdang. Jurnal Ekonom, 17(4), 195–203. Retrieved from rahmanta rujiman.pdf?sequence=1&isAllowed=y

Hanudin, Marwoto, B., Saepuloh, A., Mulya, K., & Machmud, M. (2004). Formula cair Pseudomonas fluorescens untuk pengendalian penyakit layu Fusarium pada anyelir. Jurnal Hortikultura, 14(Edisi Khusus), 403–409. Retrieved from t a i l - 1 0 4 - f o r m u l a - c a i r - p s e u d o m o n a s -fluorescens-untuk-pengendalian-penyakit-layufusarium-pada.html

Hanudin, Nuryani, W., Yusuf, E. S., & Marwoto, B. (2016). Biopestisida organik berbahan aktif Bacillus subtilis dan Pseudomonas fluorescens untuk mengendalikan penyakit layu Fusarium pada anyelir. Jurnal Hortikultura, 21(2), 152–163.

Kabdwal, B. C., Sharma, R., Tewari, R., Tewari, A. K., Singh, R. P., & Dandona, J. T. (2019). Field efficacy of different combinations of Trichoderma harzianum, Pseudomonas fluorescens, and arbuscular mycorrhiza fungus against the major diseases of tomato in Uttarakhand (India). Egyptian Journal of Biological Pest Control, 29, 1.

Kementerian Pertanian. (2016). Statistik pertanian 2016. (L. Nuryanti & B. Waryanto, Eds.). Jakarta, ID: Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian Republik Indonesia. Retrieved from

Lombard, L., Polizzi, G., Guarnaccia, V., Vitale, A., & Crous, P. W. (2011). Calonectria spp. causing leaf spot, crown and root rot of ornamental plants in Tunisia. Persoonia: Molecular Phylogeny and Evolution of Fungi, 27, 73–79.

Marousky, F. J., & de Wildt, P. P. Q. (1982). Postharvest decay in Florida leather fern. Plant Disease, 66, 1029–1031. Retrieved from a c k i s s u e s / D o c u m e n t s / 1 9 8 2 A r t i c l e s /PlantDisease66n11_1029.pdf

Marousky, F. J., Risse, L. A., & Dow, A. (1983). Control of Cylindrocladium decay in leatherleaf fern shipped from Florida to Europe. Agricultural Research Service - Advances in Agricultural Technology, Southern Series, 31, 1-14. New Orleans: Agricultural Research Service. Retrieved from

Martins, S. C. V., Galmés, J., Cavatte, P. C., Pereira, L. F., Ventrella, M. C., & DaMatta, F. M. (2014). Understanding the low photosynthetic rates of sun and shade coffee leaves: Bridging the gap on the relative roles of hydraulic, diffusive and biochemical constraints to photosynthesis. PLoS ONE, 9(4), e95571.

Maurya, M. K., Singh, R., & Tomer, A. (2014). In vitro evaluation of antagonistic activity of Pseudomonas fluorescens against fungal pathogen. Journal of Biopesticides, 7(1), 43–46. Retrieved from

Meliani, A., Bensoltane, A., Benidire, L., & Oufdou, K. (2017). Plant growth-promotion and IAA secretion with Pseudomonas fluorescens and Pseudomonas putida. Research & Reviews: Journal of Botanical Sciences, 6(2), 16–24. Retrieved from

Muslim, A., Palimanan, K., Hamidson, H., Salim, A., & Anwar, N. (2014). Evaluasi Trichoderma dalam mengendalikan penyakit rebah kecambah tanaman cabai. Jurnal Fitopatologi Indonesia, 10(3), 73–80.

Norman, D. J., Henny, R. J., Yuen, J., & Reich, L. (2002). Identification of one-septate Cylindrocladium species affecting Spathiphyllum and Rumohra sdiantiformis (Leatherleaf Fern) in Florida. Proceedings of the Florida State Horticultural Society, 115, 263–266. Retrieved from

Puspitasiwi, A. (2010). Strategi pengembangan usaha tanaman hias pakis pada PT. Floribunda, Kecamatan Cibodas, Cianjur, Jawa Barat. Institut Pertanian Bogor. Retrieved from

Quintanilla, L. G., Amigo, J., Pangua, E., & Pajarón, S. (2002). Effect of storage method on spore viability in five globally threatened fern species. Annals of Botany, 90(4), 461–467.

Rajapakse, N. C., Miller, W. B., & Kelly, J. W. (1996). Lowtemperature storage of rooted Chrysanthemum cuttings: Relationship to carbohydrate status of cultivars. Journal of the American Society for Horticultural Science, 121(4), 740–745.

Šafránková, I., Holková, L., & Kmoch, M. (2013). Leaf spot and dieback of Buxus caused by Cylindrocladium buxicola. Plant Protection Science, 49(4), 165–168. Retrieved from https://www.

Saracchi, M., Rocchi, F., Pizzatti, C., & Cortesi, P. (2008). Box blight, a new disease of buxus in Italy caused by Cylindrocladium buxicola. Journal of Plant Pathology, 90(3), 581–584. Retrieved from

Shin, T. S., Yu, N. H., Lee, J., Choi, G. J., Kim, J. C., & Shin, C. S. (2017). Development of a biofungicide using a mycoparasitic fungus Simplicillium lamellicola BCP and its control efficacy against gray mold diseases of tomato and ginseng. Plant Pathology Journal, 33(3), 337–344.

Shternshis, M., Shpatova, T., & Belyaev, A. (2016). Effect of two biological formulations based on Bacillus subtilis and Pseudomonas fluorescens on control of Didymella applanata, the causal agent of red raspberry cane spur blight. International Journal of Agronomy, 2797125, 1–6.

Sivasakthi, S., Usharani, G., & Saranraj, P. (2014). Biocontrol potentiality of plant growth promoting bacteria (PGPR) - Pseudomonas fluorescens and Bacillus subtilis: A review. African Journal of Agricultural Research, 9(16), 1265–1277.

Suhardi. (2007). Efektivitas fungisida untuk pengendalian penyakit berdasarkan curah hujan pada mawar. Jurnal Hortikultura, 17(4), 355–364. Retrieved from

Sumardiyono, C., Joko, T., Kristiawati, Y., & Chinta, Y. D. (2011). Diagnosis dan pengendalian penyakit antraknosa pada pakis dengan fungisida. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 11(2), 194–200. Retrieved from

Suo, J., Chen, S., Zhao, Q., Shi, L., & Dai, S. (2015). Fern spore germination in response to environmental factors. Frontiers in Biology, 10(4), 358–376.

Thorburn, C. (2015). The rise and demise of integrated pest management in rice in Indonesia. Insects, 6(2), 381–408.

Vanitha, S., & Ramjegathesh, R. (2014). Bio control potential of Pseudomonas fluorescens against coleus root rot disease. Journal of Plant Pathology & Microbiology, 5(1), 1–4.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.