Crossing Among Sixteen Sweet Potato Parents for Establishing Base Populations Breeding

Sri Umi Lestari, Ricky Indri Hapsari, Nur Basuki


The base - population of the controlled cross breeding is one of the important factors to develop a new improved cultivar. Since the incompatible nature of sweet potato remains a barrier for genetic improvement, therefore it requires a lot of crossed pairs. This study aimed to determine the level of incompatibility among crossing line between high yielding and micronutrient content cultivars. The field experiment conducted at Brawijaya University Research Station, Jatikerto-Malang, during February to August 2015. The North Carolina Design II was applied to sixty pairs controlled cross breeding and their sixty reciprocal pairs of six cultivars for micronutrient content enrichment with ten high yielding cultivars. The observations were made to the cross flowers number, capsules, fruit sets, and seeds number. The level of incompatibility between crossed pairs was determined by the level of fruit set. The result showed that most pairs were compatible (fruit set > 20%) and only few were incompatible (fruit set < 10%). Among six parents with micronutrient content enrichment, two of them, have a high compatibility as as female parents, to all the high yielding cultivars, i.e. BIS OP-61 and Cangkuang. Positioning as a female parent can improve the effectiveness of its selection scheme.


Capsule; Cross-compatibility; Female-parent; Seed set; Sweet potato

Full Text:



Acquaah, G. (2007). Principles of plant genetics and breeding (1st ed.). Oxford, UK: Blackwell Publishing. Retrieved from website

Afolabi, M. S., Carey, E. E., & Akoroda, M. O. (2014). Effects of staking on flower induction, pollination and cross-compatibility among sweet potato (Ipomoea batatas (L.) Lam.). Academia Journal of Agricultural Research, 2(2), 036–042. Retrieved from pdf

Baafi, E., Carey, E. E., Blay, E. T., Ofori, K., Gracen, V. E., & Manu-Aduening, J. (2016). Genetic incompatibilities in sweetpotato and implications for breeding end-user preferred traits. Australian Journal of Crop Science, 10(6), 887–894. crossref

Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V, & Pfeiffer, W. H. (2011). Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin, 32(1_suppl1), S31–S40. crossref

El Sheikha, A. F., & Ray, R. C. (2017). Potential impacts of bioprocessing of sweet potato: Review. Critical Reviews in Food Science and Nutrition, 57(3), 455–471. crossref

Grüneberg, W. J., Ma, D., Mwanga, R. O. M., Carey, E. E., Huamani, K., Diaz, F., … Chiona, M. (2015). Advances in sweetpotato breeding from 1992 to 2012. In J. Low, M. Nyongesa, S. Quinn, & M. Parker (Eds.), Potato and sweetpotato in Africa: transforming the value chains for food and nutrition security (pp. 3–68). CAB International. crossref

Gurmu, F., Hussein, S., & Laing, M. (2013). Self- and cross-incompatibilities in sweetpotato and their implications on breeding. Australian Journal of Crop Science, 7(13), 2074–2078. Retrieved from pdf

Indriani, F. C., Ashari, S., Basuki, N., & Jusuf, M. (2017). Normal seedlings as a new parameter for predicting cross incompatibility level on sweetpotato. AGRIVITA Journal of Agricultural Science, 39(1), 56–65. crossref

Islam, S. N., Nusrat, T., Begum, P., & Ahsan, M. (2016). Carotenoids and β-carotene in orange fleshed sweet potato: A possible solution to vitamin A deficiency. Food Chemistry, 199, 628–631. crossref

Lestari, S. U. (2010). Pengaruh inkompatibilitas dan sterilitas terhadap pembentukan kapsul dan biji ubijalar. AGRIVITA Jurnal Tentang Ilmu-Ilmu Pertanian, 32(1), 19–28.

Mayer, J. E., Pfeiffer, W. H., & Beyer, P. (2008). Biofortified crops to alleviate micronutrient malnutrition. Current Opinion in Plant Biology, 11(2), 166–170. crossref

Mbusa, H. K., Ngugi, K., Olubayo, F. M., Kivuva, B. M., Muthomi, J. W., & Nzuve, F. M. (2018). The inheritance of yield components and beta carotene content in sweet potato. Journal of Agricultural Science, 10(2), 71–81. crossref

Mwanga, R. O. M., Andrade, M. I., Carey, E. E., Low, J. W., Craig Yencho, G., & Grüneberg, W. J. (2017). Sweetpotato (Ipomoea batatas L.). In Genetic improvement of tropical crops (pp. 181–218). Cham, Switzerland: Springer. crossref

Ngailo, S., Shimelis, H., Sibiya, J., Mtunda, K., & Mashilo, J. (2019). Genotype-by-environment interaction of newly-developed sweet potato genotypes for storage root yield, yield related traits and resistance to sweet potato virus disease. Heliyon, 5(3), e01448. crossref

Pfeiffer, W. H., & McClafferty, B. (2007). HarvestPlus: Breeding crops for better nutrition. Crop Science, 47(Supplement_3), S-88-S-105. crossref

Rahajeng, W., & Rahayuningsih, S. A. (2013). Kemampuan pembentukan buah dan biji pada persilangan ubijalar. In N. Saleh, A. Harsono, N. Nugrahaeni, A. A. Rahmianna, Sholihin, M. Jusuf, … D. Harnowo (Eds.), Prosiding Seminar Hasil Penelitian Tanaman Aneka Kacang dan Umbi 2013 (pp. 629–634). Malang: Indonesian Legumes and Tuber Crops Research Institute. Retrieved from pdf

Rukundo, P., Shimelis, H., Laing, M., & Gahakwa, D. (2017). Combining ability, maternal effects, and heritability of drought tolerance, yield and yield components in sweetpotato. Frontiers in Plant Science, 7, 1981. crossref

Sattler, M. C., Carvalho, C. R., & Clarindo, W. R. (2016). The polyploidy and its key role in plant breeding. Planta, 243(2), 281–296. crossref

Sseruwu, G., Shanahan, P., Melis, R., & Ssemakula, G. (2016). Genetic analysis of resistance to Alternaria leaf petiole and stem blight of sweetpotato in Uganda. Euphytica, 210(3), 393–404. crossref

Truong, V. D., Avula, R. Y., Pecota, K. V., & Yencho, G. C. (2018). Sweetpotato production, processing, and nutritional quality. In M. Siddiq & M. A. Uebersax (Eds.), Handbook of vegetables and vegetable processing (2nd ed., pp. 811–838). John Wiley & Sons, Ltd. crossref

Waized, B., Ndyetabula, D., Temu, A., Robinson, E., & Henson, S. (2015). Promoting biofortified crops for nutrition: Lessons from orange-fleshed sweet potato (OFSP) in Tanzania. IDS Evidence Report 127. Retrieved from website



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.