Effects of Cytokinin and Auxin on In Vitro Organ Development and Plumbagin Content of Drosera peltata Thunb.
Abstract
A rapid propagation and plumbagin production of Drosera peltata was developed and investigated. The research aims to study the effects of cytokinins and auxins on organ development and plumbagin production from shoot tip cultures. In vitro generated shoot tips were cultured on the semi-solid 1/2 MS medium containing 3.0% sucrose, 2.0% gelrite, and 0.1, 0.5, 1.0, and 2.0 mg L–1cytokinins (BA, Kn, TDZ) and auxins (IAA, IBA, NAA and 2,4-D) for 12 weeks. The highest number of shoots (12.0 ± 1.2) was formed on the medium containing 1.0 mg L–1 TDZ, which was four-fold higher than in the control. Meanwhile, the highest number of roots per explant (9.4 ± 1.3) and rhizomes per explant (8.1 ± 0.8) were formed on the medium containing 2.0 mg L–1 NAA. The best callus induction (100%) was found on the 0.5–2.0 mg L–1 2,4-D-containing medium. Moreover, the highest plumbagin content (12.04 mg g–1 DW) was detected from shoots regenerated on the 0.1 mg L–1 BA-containing medium, which was approximately two-fold higher than that in the control. The study is efficient for organs induction and enhances plumbagin content from shoot tip explants of D. peltata.
Keywords
Full Text:
PDFReferences
Babula, P., Adam, V., Havel, L., & Kizek, R. (2009). Noteworthy secondary metabolites naphthoquinones - their occurrence, pharmacological properties and analysis. Current Pharmaceutical Analysis, 5(1), 47–68. crossref
Banasiuk, R., Kawiak, A., & Krölicka, A. (2012). In vitro cultures of carnivorous plants from the Drosera and Dionaea genus for the production of biologically active secondary metabolites. BioTechnologia, 93(2), 87–96. crossref
Bernier, G. (1988). The control of floral evocation and morphogenesis. Annual Review of Plant Physiology and Plant Molecular Biology, 39, 175–219. crossref
Bernier, G., Havelange, A., Houssa, C., Petitjean, A., & Lejeune, P. (1993). Physiological signals that induce flowering. The Plant Cell, 5, 1147–1155. crossref
Bobák, M., Blehová, A., Šamaj, J., Ovečka, M., & Krištín, J. (1993). Studies of organogenesis from the callus culture of the sundew (Drosera spathulata Labill.). Journal of Plant Physiology, 142(2), 251–253. crossref
Bonhomme, F., Kurz, B., Melzer, S., Bernier, G., & Jacqmard, A. (2000). Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. The Plant Journal, 24(1), 103–111. crossref
Capelle, S. C., Mok, D. W. S., Kirchner, S. C., & Mok, M. C. (1983). Effects of thidiazuron on cytokinin autonomy and the metabolism of N6-(A2-isopentenyl)[8-14C]adenosine in callus tissues of Phaseolus lunatus L. Plant Physiology, 73(3), 796–802. Retrieved from website
Choi, J. S., Park, N. J., Lim, H. K., Ko, Y. K., Kim, Y. S., Ryu, S. Y., & Hwang, I. T. (2012). Plumbagin as a new natural herbicide candidate for Sicyon angulatus control agent with the target 8-amino-7-oxononanoate synthase. Pesticide Biochemistry and Physiology, 103(3), 166–172. crossref
Choosakul, O. (2000, August). Plumbagin production in cell suspension cultures of Plumbago zeylanica L. Chulalongkorn University. Retrieved from website
Crouch, I. J., Finnie, J. F., & van Staden, J. (1990). Studies on the isolation of plumbagin from in vitro and in vivo grown Drosera species. Plant Cell, Tissue and Organ Culture, 21(1), 79–82. crossref
De Vleesschauwer, D., Yang, Y., Vera Cruz, C., & Hofte, M. (2010). Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiology, 152(4), 2036–2052. crossref
Debnath, M., Malik, C., & Bisen, P. (2006). Micropropagation: A tool for the production of high quality plant-based medicines. Current Pharmaceutical Biotechnology, 7(1), 33–49. crossref
Department of Pharmacognosy, Mihidol University Foundation. (2000). Encyclopedia of Thai medicinal plant Vol. IV (Northeastern medicinal recipe) (4th ed.) Bangkok: Amarin Printing & Publishing Public Company Limited. ISBN 974-663-709-6.
DiCosmo, F., & Misawa, M. (1995). Plant cell and tissue culture: Alternatives for metabolite production. Biotechnology Advances, 13(3), 425–453. crossref
DiCosmo, F., & Towers, G. H. N. (1984). Stress and secondary metabolism in cultured plant cells. In B. N. Timmermann, C. Steelink, & F. A. Loewus (Eds.), Phytochemical adaptations to stress (pp. 97–175). Boston, MA: Springer US. crossref
Didry, N., Dubreuil, L., Trotin, F., & Pinkas, M. (1998). Antimicrobial activity of aerial parts of Drosera peltata Smith on oral bacteria. Journal of Ethnopharmacology, 60(1), 91–96. crossref
Egan, P. A., & van der Kooy, F. (2013). Phytochemistry of the carnivorous sundew genus Drosera (Droseraceae) - Future perspectives and ethnopharmacological relevance. Chemistry and Biodiversity, 10(10), 1774–1790. crossref
Gangopadhyay, M., Sircar, D., Mitra, A., & Bhattacharya, S. (2008). Hairy root culture of Plumbago indica as a potential source for plumbagin. Biologia Plantarum, 52(3), 533–537. crossref
Gonçalves, S., & Romano, A. (2005). Micropropagation of Drosophyllum lusitanicum (Dewy pine), an endangered West Mediterranean endemic insectivorous plant. Biodiversity and Conservation, 14(5), 1071–1081. crossref
Grevenstuk, T., Coelho, N., Gonçalves, S., & Romano, A. (2010). In vitro propagation of Drosera intermedia in a single step. Biologia Plantarum, 54(2), 391–394. crossref
Grevenstuk, T., Gonçalves, S., Domingos, T., Quintas, C., van der Hooft, J. J., Vervoort, J., & Romano, A. (2012). Inhibitory activity of plumbagin produced by Drosera intermedia on food spoilage fungi. Journal of the Science of Food and Agriculture, 92(8), 1638–1642. crossref
He, Y., He, Z., He, F., & Wan, H. (2012). Determination of quercetin, plumbagin and total flavonoids in Drosera peltata Smith var. glabrata Y.Z.Ruan. Pharmacognosy Magazine, 8(32), 263–267. crossref
Hema, B., Bhupendra, S., Mohamed Saleem, T. S., & Gauthaman, K. (2009). Anticonvulsant effect of Drosera burmannii Vahl. International Journal of Applied Research in Natural Products, 2(3), 1–4. Retrieved from website
Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. The Plant Cell, 25(9), 3159–3173. crossref
Jayaram, K., & Prasad, M. N. V. (2007). Rapid in vitro multiplication of Drosera indica L.: A vulnerable, medicinally important insectivorous plant. Plant Biotechnology Reports, 1(2), 79–84. crossref
Jayaram, K., & Prasad, M. N. V. (2008). Rapid in vitro multiplication of Drosera burmanii Vahl.: A vulnerable and medicinally important insectivorous plant. Indian Journal of Biotechnology, 7(2), 260–265. Retrieved from website
Jennings, D. E., & Rohr, J. R. (2011). A review of the conservation threats to carnivorous plants. Biological Conservation, 144(5), 1356–1363. crossref
Jindaprasert, A., Samappito, S., Springob, K., Schmidt, J., Gulder, T., De-Eknamkul, W., … Kutchan, T. M. (2001). In vitro plants, callus and root cultures of Plumbago indica and their biosynthetic potential for plumbagin. King Mongkut’s Agro-Industry Journal, 2(1), 53–65. Retrieved from website
Juengwatanatrakul, T., Sakamoto, S., Tanaka, H., & Putalun, W. (2011). Elicitation effect on production of plumbagin in in vitro culture of Drosera indica L. Journal of Medicinal Plants Research, 5(19), 4949–4953. Retrieved from website
Kawiak, A., Królicka, A., & Łojkowska, E. (2003). Direct regeneration of Drosera from leaf explants and shoot tips. Plant Cell, Tissue and Organ Culture, 75(2), 175–178. crossref
Kim, K. S., & Jang, G. W. (2004). Micropropagation of Drosera peltata, a tuberous sundew, by shoot tip culture. Plant Cell, Tissue and Organ Culture, 77(2), 211–214. crossref
Länger, R., Pein, I., & Kopp, B. (1995). Glandular hairs in the genus Drosera (Droseraceae). Plant Systematics and Evolution, 194(3–4), 163–172. crossref
Larsen, K. (1987). Droseraceae. In T. Smitinand, & I. Nielsen (Eds.), Flora of Thailand (pp. 67-69). Bangkok: The Forest Herbarium, Royal Forest Department.
Mantell, S. H., & Smith, H. (1984). Cultural factors that influence secondary metabolite accumulations in plant cell and tissue cultures. In S. H. Mantell, & H. Smith (Eds.), Plant biotechnology (pp. 75-108). Cambridge: Cambridge University Press.
Marczak, Kawiak, A., Łojkowska, E., & Stobiecki, M. (2005). Secondary metabolites in in vitro cultured plants of the genus Drosera. Phytochemical Analysis, 16(3), 143–149. crossref
Marion Meyer, J. J., Van der Kooy, F., & Joubert, A. (2007). Identification of plumbagin epoxide as a germination inhibitory compound through a rapid bioassay on TLC. South African Journal of Botany, 73(4), 654–656. crossref
Melzig, M. F., Pertz, H. H., & Krenn, L. (2001). Anti-inflammatory and spasmolytic activity of extracts from Droserae herba. Phytomedicine, 8(3), 225–229. crossref
Mok, M. C., & Mok, D. W. S. (1985). The metabolism of [14C]-tMdiaziiroii in callus tissues of Phaseolus lunatus. Physiologia Plantarum, 65(4), 427–432. crossref
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497. crossref
Nahálka, J., Blanárik, P., Gemeiner, P., Matúšová, E., & Partlová, I. (1996). Production of plumbagin by cell suspension cultures of Drosophyllum lusitanicum Link. Journal of Biotechnology, 49(1–3), 153–161. crossref
Naseem, M., Kaltdorf, M., & Dandekar, T. (2015). The nexus between growth and defence signalling: Auxin and cytokinin modulate plant immune response pathways. Journal of Experimental Botany, 66(16), 4885–4896. crossref
Pantelides, I. S., Tjamos, S. E., Pappa, S., Kargakis, M., & Paplomatas, E. J. (2013). The ethylene receptor ETR1 is required for Fusarium oxysporum pathogenicity. Plant Pathology, 62(6), 1302–1309. crossref
Patidar, S. L. (2012). In vitro propagation and secondary metabolites production studies in chitrak (Plumbago zeylanica L.). Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya. Retrieved from PDF
Putalun, W., Udomsin, O., Yusakul, G., Juengwatanatrakul, T., Sakamoto, S., & Tanaka, H. (2010). Enhanced plumbagin production from in vitro cultures of Drosera burmanii using elicitation. Biotechnology Letters, 32(5), 721–724. crossref
Ramachandra Rao, S., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20(2), 101–153. crossref
Ramage, C. M., & Williams, R. R. (2004). Cytokinin-induced abnormal shoot organogenesis is associated with elevated Knotted1-type homeobox gene expression in tobacco. Plant Cell Reports, 22(12), 919–924. crossref
Rodriguez-Sahagun, A., Del Toro-Sánchez, C. L., Gutierrez-Lomelí, M., & Castellanos-Hernandez, O. (2012). Plant cell and tissue culture as a source of secondary metabolites. In I. E. Orhan (Ed.), Biotechnological Production of Plant Secondary Metabolites (pp. 3–20). CW Soest: Bentham e-Books. crossref
Rout, G. R., Samantary, S., & Das, P. (2000). In vitro manipulation and propagation of medicinal plants. Biotechnology Advances, 18, 91-120. crossref
Shilpashree, H. P., & Rai, R. (2009). In vitro plant regeneration and accumulation of flavonoids in Hypericum mysorense. International Journal of Integrative Biology, 8(1), 41–49. Retrieved from website
Shimasaki, K., & Uemoto, S. (1991). Rhizome induction and plantlet regeneration of Cymbidium goeringii from flower bud cultures in vitro. Plant Cell, Tissue and Organ Culture, 25(1), 49–52. crossref
Smetanska, I. (2008). Production of secondary metabolites using plant cell cultures. Advances in Biochemical Engineering & Biotechnology, 111, 187–228. crossref
Staba, E. J. (1980). Plant tissue culture as a source of biochemicals. Boca Raton, FL: CRC Press.
Taraszkiewicz, A., Jafra, S., Skrzypczak, A., Kaminski, M., & Krolicka, A. (2012). Antibacterial activity of secondary metabolites from in vitro culture of Drosera gigantea againts the plant pathogenic bacteria Pseudomonas syringae pv. Syringae and P. syringae pv. Morsprunorum. Journal of Plant Pathology, 94(1), 63–68. crossref
Tian, J., Chen, Y., Ma, B., He, J., Tong, J., & Wang, Y. (2014). Drosera peltata Smith var. lunata (Buch.-Ham.) C. B. Clarke as a feasible source of plumbagin: phytochemical analysis and antifungal activity assay. World Journal of Microbiology and Biotechnology, 30(2), 737–745. crossref
Wawrosch, C., Benda, E., & Kopp, B. (2009). An improved 2-step liquid culture system for efficient in vitro shoot proliferation of sundew (Drosera rotundifolia L.). Scientia Pharmaceutica, 77(4), 827–836. crossref
Widhalm, J. R., & Rhodes, D. (2016). Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. Horticulture Research, 3, 16046. crossref
Xin, Z., Yu, Z., Erb, M., Turlings, T. C. J., Wang, B., Qi, J., … Lou, Y. (2012). The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp. New Phytologist, 194(2), 498–510. crossref
Xu, K. H., & Lu, D. P. (2010). Plumbagin induces ROS-mediated apoptosis in human promyelocytic leukemia cells in vivo. Leukemia Research, 34(5), 658-665. crossref
Zenk, M. H., Fübringer, M., & Steglich, W. (1969). Occurrence and distribution of 7-methyljugone and plumbagin in the Droseraceae. Phytochemistry, 8, 2199-2200. crossref
Zhou, G., Qi, J., Ren, N., Cheng, J., Erb, M., Mao, B., & Lou, Y. (2009). Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. The Plant Journal, 60(4), 638–648. crossref
DOI: http://doi.org/10.17503/agrivita.v40i0.1276
Copyright (c) 2018 UNIVERSITAS BRAWIJAYA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.