Physiological Response and Photosynthate Distribution of West Indian Arrowroot at Different Altitudes

Laksmi Puspitasari, Triadiati Triadiati, Sulistijorini Sulistijorini

Abstract


West Indian arrowroot (Maranta arundinacea L.) is a tuber crop that is consumed as an alternative food. İt can grow in an area with altitudinal range from 0 to 1,000 m asl. This study aimed to analyse physiological response and photosynthate distribution which is related to growth performance and tuber yield of West Indian arrowroot at two different altitudes. Four accessions of West Indian arrowroot i.e. Bantul, Krajan, Kemalang, and Begawat were planted at 250 and 1,100 m asl. This study was conducted using split plot design with altitude as the main plot and the accession of West Indian arrowroot as a subplot. The results showed that altitudes significantly affected physiological response, plant height, leaf area per plant, and tuber yield of West Indian arrowroot. The rate of photosynthesis in the highland tended to be higher than that in the lowland, but plant height and tuber yield were lower in highland. These results suggested that the West Indian arrowroot had different pattern on photosynthate distribution between shoot and tuber at different altitudes because of environmental factors. Bantul accession had the lowest tuber yield compared to the others, and showed the low ability of accession Bantul in distributing photosynthate towards tuber.

Keywords


altitude; Maranta arundinacea; photosynthate distribution; photosynthesis rate; tuber yield

Full Text:

PDF

References


Anten, N. P. R., Alcalá-Herrera, R., Schieving, F., & Onoda, Y. (2010). Wind and mechanical stimuli differentially affect leaf traits in Plantago major. New Phytologist, 188(2), 554–564. http://doi.org/10.1111/j.1469-8137.2010.03379.x

Aprianita, A., Vasiljevic, T., Bannikova, A., & Kasapis, S. (2014). Physicochemical properties of flours and starches derived from traditional Indonesian tubers and roots. Journal of Food Science and Technology, 51, 3669-3679. https://doi.org/10.1007/s13197-012-0915-5

Atkin, O. K., Loveys, B. R., Atkinson, L. J., & Pons, T. L. (2006). Phenotypic plasticity and growth temperature: Understanding interspecific variability. Journal of Experimental Botany, 57(2), 267–281. http://doi.org/10.1093/jxb/erj029

Bilska-Kos, A., Grzybowski, M., Jończyk, M., & Sowiński, P. (2016). In situ localization and changes in the expression level of transcripts related to intercellular transport and phloem loading in leaves of maize (Zea mays L.) treated with low temperature. Acta Physiologiae Plantarum, 38, 123. http://doi.org/10.1007/s11738-016-2151-5

Braun, D. M., Wang, L., & Ruan, Y.-L. (2014). Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. Journal of Experimental Botany, 65(7), 1713–1735. http://doi.org/10.1093/jxb/ert416

Bridgemohan, P. (2011). Production and partitioning of dry matter in leren [Calathea allouia (Aubl.) Lindl]. The Journal of Agriculture of the University of Puerto Rico, 95(1–2), 35–44. Retrieved from https://revistas.upr.edu/index.php/jaupr/article/view/2545

Condori, B., Mamani, P., Botello, R., Patiño, F., Devaux, A., & Ledent, J. F. (2008). Agrophysiological characterisation and parametrisation of Andean tubers: Potato (Solanum sp.), oca (Oxalis tuberosa), isaño (Tropaeolum tuberosum) and papalisa (Ullucus tuberosus). European Journal of Agronomy, 28, 526–540. http://doi.org/10.1016/j.eja.2007.12.002

Cooke, C., Carr, I., Abrams, K., & Mayberry, J. (2000). Arrowroot as a treatment for diarrhoea in irritable bowel syndrome patients: a pilot study. Arquivos de Gastroenterologia, 37(1), 20-24. http://doi.org/10.1590/S0004-2803200000010005

Darvishi, B. (2016). Potato minituber production under hydroponic sand culture. Agrofor, 1(3), 18–25. http://doi.org/10.7251/AGRENG1603018D

de Oliveira Mello, J. I., Barbedo, C. J., Salatino, A., & de Cássia Leone Figueiredo-Ribeiro, R. (2010). Reserve carbohydrates and lipids from the seeds of four tropical tree species with different sensitivity to desiccation. Brazilian Archives of Biology and Technology, 53(4), 889–899. http://doi.org/10.1590/S1516-89132010000400019

Delin, W., & Kennedy, H. (2000). Marantaceae. In: Z. Y. Wu, & P. H. Raven (Eds.), Flora of China Volume 24: Flagellariaceae through Marantaceae (pp. 379-382). Beijing, MO: Science Press.

Dierig, D. A., Adam, N. R., Mackey, B. E., Dahlquist, G. H., & Coffelt, T. A. (2006). Temperature and elevation effects on plant growth, development, and seed production of two Lesquerella species. Industrial Crops and Products, 24(1), 17–25. http://doi.org/10.1016/j.indcrop.2005.10.004

Djaafar, T. F., Sarjiman, & Pustika, A. B. (2010). Pengembangan budi daya tanaman garut dan teknologi pengolahannya untuk mendukung ketahanan pangan. Jurnal Penelitian Dan Pengembangan Pertanian, 29(1), 25–33. Retrieved from http://ejurnal.litbang.pertanian.go.id/index.php/jppp/article/view/3485

Dordas, C. A., & Sioulas, C. (2009). Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crops Research, 110(1), 35–43. http://doi.org/10.1016/j.fcr.2008.06.011

Gale, J. (2004). Plants and altitude - Revisited. Annals of Botany, 94(2), 199. http://doi.org/10.1093/aob/mch143

Garvey, C. J., Lenné, T., Koster, K. L., Kent, B., & Bryant, G. (2013). Phospholipid membrane protection by sugar molecules during dehydration-insights into molecular mechanisms using scattering techniques. International Journal of Molecular Sciences, 14(4), 8148–8163. http://doi.org/10.3390/ijms14048148

Gordillo, C. A. S., Valencia, G. A., Zapata, R. A. V., & Henao, A. C. A. (2014). Physicochemical characterization of arrowroot starch (Maranta arundinacea Linn) and glycerol/arrowroot starch membranes. International Journal of Food Engineering, 10(4), 727-735. http://doi.org/10.1515/ijfe-2014-0122

Handler, J. S. (1971). The history of arrowroot and the origin of peasantries in the British West Indies. Journal of Caribbean History, 2, 46–93. Retrieved from http://jeromehandler.org/1971/01/the-history-of-arrowroot-and-the-origin-of-peasantries-in-the-british-west-indies/

Harmayani, E., Kumalasari, D. I., & Marsono, Y. (2011). Effect of arrowroot (Maranta arundinacea L.) diet on the selected bacterial population and chemical properties of caecal digesta of Sprague Dawley rats. International Research Journal of Microbiology, 2(8), 278–284. Retrieved from https://www.interesjournals.org/articles/effect-of-arrowroot-maranta-arundinacea-l-diet-on-theselected-bacterial-population-and-chemical-propertiesof-caecal-dige.pdf

Hossain, M. D., Hanafi, M. M., Saleh, G., Foroughi, M., Behmaram, R., & Noori, Z. (2012). Growth, photosynthesis and biomass allocation of different kenaf (Hibiscus cannabinus L.) accessions grown on sandy soil. Australian Journal of Crop Science, 6(3), 480–487. Retrieved from http://www.cropj.com/hossain_6_3_2012_480_487.pdf

Jain, V. M., Karibasappa, G. N., Dodamani, A. S., & Mali, G. V. (2017). Estimating the carbohydrate content of various forms of tobacco by phenol-sulfuric acid method. Journal of Education and Health Promotion, 6, 90. http://doi.org/10.4103/jehp.jehp_41_17

Kumalasari, I. D., Harmayani, E., Lestari, L. A., Raharjo, S., Asmara, W., Nishi, K., & Sugahara, T. (2012). Evaluation of immunostimulatory effect of the arrowroot (Maranta arundinacea L.) in vitro and in vivo. Cytotechnology, 64, 131-137. http://doi.org/10.1007/s10616-011-9403-4

Kumar, N., Kumar, S., Vats, S. K., & Ahuja, P. S. (2006). Effect of altitude on the primary products of photosynthesis and the associated enzymes in barley and wheat. Photosynthesis Research, 88, 63. http://doi.org/10.1007/s11120-005-9028-6

Kuo, Y.-L., Lee, Y.-P., & Yang, Y.-L. (2011). Wind effects on stomatal conductance and leaf temperature of tree seedlings distributed in various habitats of the Nanjenshan forest, Southern Taiwan. Taiwan Journal of Forest Science, 26(1), 1–16. Retrieved from https://www.tfri.gov.tw/main/download.aspx?dlfn=01-99-13南仁山森林.pdf

Lambers, H., Chapin III, F. Stuart, & Pons, Thijs L. (2008). Plant physiological ecology (2nd ed.). New York, US: Springer-Verlag.

Lemoine, R., Camera, S. La, Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N., … Durand, M. (2013). Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science, 4(272), 1–21. http://doi.org/10.3389/fpls.2013.00272

Lestari, L. A., Huriyati, E., Marsono, Y. (2017). The development of low glycemic index cookie bars from foxtail millet (Setaria italica), arrowroot (Maranta arundinacea) flour, and kidney beans (Phaseolus vulgaris). Journal of Food Science and Technology, 54, 1406-1413. https://doi.org/10.1007/s13197-017-2552-5

Lim, T. K. (2016). Edible medicinal and non-medicinal plants. Volume 11. Modified stems, roots, bulbs. Switzerland, CH: Springer Publishing.

Ma, L., Sun, X., Kong, X., Galvan, J. V., Li, X., Yang, S., … Hu, X. (2015). Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau. Journal of Proteomics, 112, 63–82. http://doi.org/10.1016/j.jprot.2014.08.009

Oktafani, M B., Supriyono, Budiastuti, M. S., & Purnomo, D. (2018). Performance of Arrowroot (Marantha arundinacea) in various light intensities. IOP Conf. Series: Earth and Environmental Science. 142. http://doi.org/10.1088/1755-1315/142/1/012048

Onoda, Y., & Anten, N. P. R. (2011). Challenges to understand plant responses to wind. Plant Signaling and Behavior, 6(7), 1057–1059. http://doi.org/10.4161/psb.6.7.15635

Pan, H. L., Liu, X. L., Cai, X. H., Du, Z., He, F., Wang, L., … Li, M. H. (2009). Growth and morphological responses of Fargesia angustissima to altitude in the Wolong nature reserve, Southwestern China. Acta Ecologica Sinica, 29(2), 144–149. http://doi.org/10.1016/j.chnaes.2009.06.001

Rahman, M. K., Chowdhury, M. A. U., Islam, M. T., Chowdhury, M. A., Uddin, M. E., & Sumi, C. D. (2015). Evaluation of antidiarrheal activity of methanolic extract of Maranta arundinacea Linn. leaves. Advances in Pharmacological Sciences, 2015, 1–6. http://doi.org/10.1155/2015/257057

Rohandi, A., Budiadi, Hardiwinoto, S., Harmayani, E., & Sudrajat, D. J. (2017). Variability in morphophysiology, tuber yield and starch content of several arrowroot populations in Garut district. AGRIVITA Journal of Agricultural Science, 39(3), 311–323. http://doi.org/10.17503/agrivita.v39i3.1002

Schymanski, S. J., & Or, D. (2016). Wind increases leaf water use efficiency. Plant, Cell and Environment, 39(7), 1448–1459. http://doi.org/10.1111/pce.12700

Sharaf, A. E.-M. A., Khafagi, O.-M. A., Hatab, E.-B. E., & Moursy, M. M. (2013). Effect of altitudinal gradients on the content of carbohydrate, protein, proline and total phenols of some desert plants in Saint Katherine Mountain, South Sinai, Egypt. Middle-East Journal of Scientific Research, 14(1), 122–129. http://doi.org/10.5829/idosi.mejsr.2013.14.1.2006

Shi, Z., Haworth, M., Feng, Q., Cheng, R., & Centritto, M. (2015). Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and a herbaceous annual. AoB Plants, 7, plv115. http://doi.org/10.1093/aobpla/plv115

Shi, Z., Liu, S., Liu, X., & Centritto, M. (2006). Altitudinal variation in photosynthetic capacity, diffusional conductance and δ13C of butterfly bush (Buddleja davidii) plants growing at high elevations. Physiologia Plantarum, 128(4), 722–731. http://doi.org/10.1111/j.1399-3054.2006.00805.x

Shintu, P. V., Radhakrishnan, V. V., & Mohanan, K. V. (2015). Pharmacognostic standardisation of Maranta arundinacea L. – An important ethnomedicine. Journal of Pharmacognosy and Phytochemistry, 4(3), 242-246. Retrieved from http://www.phytojournal.com/archives/2015/vol4issue3/PartD/4-3-36.pdf

Smith, V. C., & Ennos, A. R. (2003). The effects of air flow and stem flexure on the mechanical and hydraulic properties of the stems of sunflowers Helianthus annuus L. Journal of Experimental Botany, 54(383), 845–849. http://doi.org/10.1093/jxb/erg068

Suhartini, T., & Hadiatmi. (2011). Keragaman karakter morfologis garut (Marantha arundinaceae L.). Buletin Plasma Nutfah, 17(1), 12–18. http://doi.org/10.21082/blpn.v17n1.2011.p12-18

Sutoro, & Hadiatmi. (2011). Perbanyakan bibit stek umbi dan uji adaptabilitas plasma nutfah garut (Marantha arundinaceae L.). Buletin Plasma Nutfah, 17(1), 1–11. http://doi.org/10.21082/blpn.v17n1.2011.p1-11

Tan, S. L., & Zaharah, A. (2015). Tuber crops. Utar Agriculture Science Journal, 1(1), 41–48. Retrieved from http://eprints.utar.edu.my/1680/1/UASJ_2015_Vol_1(1)%2C_9_Tuber_Crops.pdf

Tekalign, T., & Hammes, P. S. (2005). Growth and productivity of potato as influenced by cultivar and reproductive growth: II. Growth analysis, tuber yield and quality. Scientia Horticulturae, 105(1), 29–44. http://doi.org/10.1016/j.scienta.2005.01.021

Villamayor, F. G., & Jukema, J. (1996). Maranta arundinacea L. In: F. Rumawas & M. Flach (Eds.), Plants resources of South-East Asia No 9 plants yielding non-seed carbohydrates (pp.113-116). Wageningen, NL: Prosea.

Wu, D., & Kennedy, H. (2000). Marantaceae. In W. Zhengyi & P. H. Raven (Eds.), Flora of China, Vol. 24: Flagellariaceae through Marantaceae (pp. 379-382). St. Louis, US: Missouri Botanical Garden Pr.

Xie, S., & Luo, X. (2003). Effect of leaf position and age on anatomical structure, photosynthesis, stomatal conductance and transpiration of Asian pear. Botanical Bulletin of Academia Sinica, 44, 297–303. Retrieved from https://ejournal.sinica.edu.tw/bbas/content/2003/4/bot444-06.html

Yamori, W., Hikosaka, K., & Way, D. A. (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynthesis Research, 119(1–2), 101–117. http://doi.org/10.1007/s11120-013-9874-6

Yuliani, Soemarno, Yanuwiadi, B., & Leksono, A. S. (2015). The relationship between habitat altitude, enviromental factors and morphological characteristics of Pluchea indica, Ageratum conyzoides and Elephantopus scaber. OnLine Journal of Biological Sciences, 15(3), 143–151. http://doi.org/10.3844/ojbsci.2015.143.151

Zheng, S.-L., Wang, L.-J., Wan, N.-X., Zhong, L., Zhou, S.-M., He, W., & Yuan, J.-C. (2016). Response of potato tuber number and spatial distribution to plant density in different growing seasons in Southwest China. Frontiers in Plant Science, 7, 365. http://doi.org/10.3389/fpls.2016.00365




DOI: http://doi.org/10.17503/agrivita.v41i1.1261

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.