Compatibility Test of Four Trichoderma spp. Isolates on Several Synthetic Pesticides

Loekas Soesanto, Endang Mugiastuti, Ruth Feti Rahayuniati, Abdul Manan, Ratna Stia Dewi


This research aimed to study the compatibility of some Trichoderma spp. isolates on some synthetic chemical pesticides carried out at the Laboratory of Plant Protection, Faculty of Agriculture, Jenderal Soedirman University from April up to July 2014. Trichoderma isolates were derived from rhizosphere exploration on ginger, banana, pineapple and shallot. The synthetic pesticides used were mancozeb and propineb (fungicides), oxytetracycline and streptomycin sulfate (agrimycin, bactericides), carbofuran (nematicide), and deltamethrin and prefenophos (insecticides: synthetic pyrethroids and chiral organophosphates, respectively). The compatibility test used food poisoning method in a completely randomized design with three replicates. Variables observed were discolouration, sporulation, colony diameter, conidia density, and fungal growth at pesticides treatment. The data were analyzed by F test at 5 % significant level and continued by Duncan Multiple Range Test (DMRT) when there was a significant difference. The result of the research showed that the most significant decreasing of Trichoderma spp. was found on mancozeb for shallot, ginger, and banana isolates, and propineb for pineapple isolate, respectively, 89.4, 97.7, 93.3, and 95.2 %. This result was in line with colour, sporulation, and inhibition level observation.


Compatibility; Synthetic pesticides; Trichoderma spp.

Full Text:



Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. crossref

Bagwan, N. B. (2010). Evaluation of Trichoderma compatibility with fungicides, pesticides, organic cakes and botanicals for integerated management of soil borne diseases of soybean [Glycine max (L.) Merril]. International Journal of Plant Protection, 3(2), 206–209. Retrieved from PDF

Bailey, B. A., Bae, H., Strem, M. D., Crozier, J., Thomas, S. E., Samuels, G. J., … Holmes, K. A. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46(1), 24–35. crossref

Barakat, F. M., Abada, K. A., Abou-Zeid, N. M., & El-Gammal, Y. H. E. (2014). Effect of volatile and non-volatile compounds of Trichoderma spp. on Botrytis fabae the causative agent of faba bean chocolate spot. American Journal of Life Sciences, 2(6–2), 11. crossref

Benhamou, N., & Chet, I. (1997). Cellular and molecular mechanisms involved in the interaction between Trichoderma harzianum and Pythium ultimum. Applied and Environmental Microbiology, 63(5), 2095–2099. Retrieved from website

Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260. Retrieved from PDF

Bhatnagar, H. (1995). Integrated use of biocontrol agents with fungicides to control wilt incidence in pigeon-pea. World Journal of Microbiology & Biotechnology, 11(5), 564–566. crossref

Černohlávková, J., Jarkovský, J., & Hofman, J. (2009). Effects of fungicides mancozeb and dinocap on carbon and nitrogen mineralization in soils. Ecotoxicology and Environmental Safety, 72(1), 80–85. crossref

Chowdhury, A., Pradhan, S., Saha, M., & Sanyal, N. (2008). Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian Journal of Microbiology, 48(1), 114–127. crossref

Cooper, J., & Dobson, H. (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26(9), 1337–1348. crossref

Cycoń, M., Piotrowska-Seget, Z., & Kozdrój, J. (2010). Responses of indigenous microorganisms to a fungicidal mixture of mancozeb and dimethomorph added to sandy soils. International Biodeterioration and Biodegradation, 64(4), 316–323. crossref

Day, K. E., & Maguire, R. J. (1990). Acute toxicity of isomers of the pyrethroid insecticide deltamethrin and its major degradation products to Daphnia magna. Environmental Toxicology and Chemistry, 9, 1297–1300. crossref

Direktorat Pupuk dan Pestisida. (2016). Pestisida pertanian dan kehutanan tahun 2016 [Pesticides of agriculture and forestry 2016]. Jakarta: Ditjen PSP. Retrieved from PDF

Dwimartina, F., Arwiyanto, T., & Joko, T. (2017). Potential of endophytic and rhizobacteria as an effective biocontrol for Ralstonia syzygii subsp. syzygii. Asian Journal of Plant Pathology, 11, 191–198. crossref

El Khoury, W., & Makkouk, K. (2010). Integrated plant disease management in developing countries. Journal of Plant Pathology, 92(4, supplement), 35–42. Retrieved from website

Elad, Y., Barak, R., & Chet, I. (1984). Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum. Soil Biology and Biochemistry, 16(4), 381–386. crossref

Erper, I., Turkkan, M., Atanasova, L., Druzhinina, I. S., Karaca, G. H., & Cebi-Kilicoglu, M. (2013). Integrated assessment of the mycoparasitic and phytostimulating properties of Trichoderma strains against Rhizoctonia solani. Bulgarian Journal of Agricultural Science, 19(4), 742–748. Retrieved from PDF

Gómez, I., Chet, I., & Herrera-Estrella, A. (1997). Genetic diversity and vegetative compatibility among Trichoderma harzianum isolates. Molecular and General Genetics, 256(2), 127–135. crossref

Gowdar, S. B., Babu, H. N. R., Nargund, V. B., & Krishnappa, M. (2006). Compatibility of fungicides with Trichoderma harzianum. Agricultural Science Digest, 26(4), 279–281. Retrieved from website

Haggag, W. M., & Abo-Sedera, S. A. (2005). Characteristics of three Trichoderma species in peanut haulms compost involved in biocontrol of cumin wilt disease. International Journal of Agriculture and Biology, 7(2), 222–229. Retrieved from PDF

Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2), 190–194. crossref

Haryono, J., Prihatiningsih, N., Wardhana, R. A., & Soesanto, L. (2009). Pengaruh pemasteuran tanah tunggal atau digabung agensia hayati terhadap pengelolaan penyakit busuk hati di pembibitan pisang [The effect of soil pasteurization alone or in combination with biological agents on heart rot disease management of banana seed]. Akta Agrosia, 12(1), 21–28. Retrieved from PDF

Henis, Y., Adams, P. B., Lewis, J. A., & Papavizas, G. C. (1983). Penetration of sclerotia of Sclerotium rolfsii by Trichoderma spp. Phytopathology, 73, 1043–1046. Retrieved from PDF

Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4–10. crossref

Jegathambigai, V., Wilson Wijeratnam, R. S., & Wijesundera, R. L. C. (2010). Effect of Trichoderma sp. on Sclerotium rolfsii, the causative agent of collar rot on Zamioculcas zamiifolia and an on farm method to mass produce Trichoderma species. Plant Pathology Journal, 9, 47–55. crossref

Joko, T., Koentjoro, M. P., Somowiyarjo, S., Rohman, M. S., Liana, A., & Ogawa, N. (2012). Response of rhizobacterial communities in watermelon to infection with cucumber green mottle mosaic virus as revealed by cultivation-dependent RISA. Archives of Phytopathology and Plant Protection, 45(15), 1810–1818. crossref

Karthikeyan, A., Kumar, S., & Kumar, S. (2003). Trichoderma viride: A mycoparasite for the control of Phytophthora cinnamomi. Indian Forester, 129(5), 631–634. Retrieved from website

Khan, M. O., & Shahzad, S. (2007). Screening of Trichoderma species for tolerance to fungicides. Pakistan Journal of Botany, 39(3), 945–951. Retrieved from PDF

Köprücü, K., & Seker, E. (2008). Acute toxicity of deltamethrin for freshwater mussel, Unio elongatulus eucirrus bourguignat. Bulletin of Environmental Contamination and Toxicology, 80(1), 1–4. crossref

Lilly, V. G., & Barnett, H. L. (1951). Physiology of the fungi. New York, Toronto, London: McGraw-Hill Book Company, Inc. Retrieved from website

Lo, C.-C. (2010). Effect of pesticides on soil microbial community. Journal of Environmental Science and Health Part. B, 45(5), 348–359. crossref

Mahfut, Joko, T., & Daryono, B. S. (2016). Molecular characterization of odontoglossum ringspot virus (ORSV) in Java and Bali, Indonesia. Asian Journal of Plant Pathology, 10(1–2), 9–14. crossref

Monte, E. (2001). Understanding Trichoderma: between biotechnology and microbial ecology. International Microbiology, 4(1), 1–4. crossref

Oda, S. S., & El-Maddawy, Z. K. (2012). Protective effect of vitamin E and selenium combination on deltamethrin-induced reproductive toxicity in male rats. Experimental and Toxicologic Pathology, 64(7–8), 813–819. crossref

Paret, M., Dufault, N., Momol, T., Marois, J., & Olson, S. (2015). Integrated disease management for vegetable crops in Florida. Florida: University of Florida. Retrieved from PDF

Probowo, A., Prihatiningsih, N., & Soesanto, L. (2006). Potensi Trichoderma harzianum dalam mengendalikan sembilan isolat Fusarium oxysporum Schlecht. f. sp. zingiberi Trujillo pada kencur [Potency of Trichoderma harzianum in controlling nine isolates of Fusarium oxysporum Schlecht. f. sp. zingiberi Trujilo on galanga]. Jurnal Ilmu-Ilmu Pertanian Indonesia, 8(2), 76–84. Retrieved from PDF

Reithner, B., Ibarra-Laclette, E., Mach, R. L., & Herrera-Estrella, A. (2011). Identification of mycoparasitism-related genes in Trichoderma atroviride. Applied and Environmental Microbiology, 77(13), 4361–4370. crossref

Santoso, S. E., Soesanto, L., & Haryanto, T. A. D. (2007). Penekanan hayati penyakit moler pada bawang merah dengan Trichoderma harzianum, Trichoderma koningii, dan Pseudomonas fluorescens P60 [Biological suppression of moler disease on shallot by Trichoderma harzianum, Trichoderma koningii, and Pseudomonas fluorescens P60]. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 7(1), 53–61. Retrieved from website

Sengupta, D., Aktar, M. W., Alam, S., & Chowdhury, A. (2010). Impact assessment and decontamination of pesticides from meat under different culinary processes. Environmental Monitoring and Assessment, 169(1–4), 37–43. crossref

Sharma, B. K., Singh, B. M., & Sugha, S. K. (1992). Integrated effect of biological and chemical control on sclerotial viability of Sclerotinia sclerotiorum (Lib.) de Bary. Journal of Biological Control, 6(1), 29–34. Retrieved from website

Singh, V. P., Srivastava, S., Shrivastava, S. K., & Singh, H. B. (2012). Compatibility of different insecticides with Trichoderma harzianum under in vitro condition. Plant Pathology Journal, 11(2), 73–76. crossref

Soesanto, L., Sudarmono, Prihatiningsih, N., Manan, A., Iriani, E., & Pramono, J. (2005). Potensi agensia hayati dan nabati dalam mengendalikan penyakit busuk rimpang jahe [Potency of biological and botanical agents in controlling ginger rhizome rot]. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 5(1), 50–57. Retrieved from website

Soytong, K., & Quyet, N. T. (2013). Production of organic compost from mushroom producing substances waste and tested for Kangkong organic cultivation. International Journal of Agricultural Technology, 9(1), 115–123. Retrieved from website

Sutton, L. M., & Starzyk, M. J. (1972). Procedure and analysis of a useful method in determining mycelial dry weights from agar plates. Applied Microbiology, 24(6), 1011–1012. Retrieved from website

Thakore, Y. (2006). The biopesticide market for global agricultural use. Industrial Biotechnology, 2(3), 194–208. crossref

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 40(1), 1–10. crossref

Wardhana, D. W., Soesanto, L., & Utami, D. S. (2009). Penekanan hayati penyakit layu Fusarium pada subang gladiol [Biological suppression of Fusarial Wilt on gladiolus corms]. Jurnal Hortikultura, 19(2), 199–206. Retrieved from website

Yang, C., Hamel, C., Vujanovic, V., & Gan, Y. (2011). Fungicide: Modes of action and possible impact on nontarget microorganisms. ISRN Ecology, 2011, 1–8. crossref

Yildirim, M. Z., Benli, A. Ç. K., Selvi, M., Özkul, A., Erkoç, F., & Koçak, O. (2006). Acute toxicity, behavioral changes, and histopathological effects of deltamethrin on tissues (gills, liver, brain, spleen, kidney, muscle, skin) of Nile tilapia (Oreochromis niloticus L.) fingerlings. Environmental Toxicology, 21(6), 614–620. crossref

Zimand, G., Elad, Y., & Chet, I. (1996). Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology, 86, 1255–1260. crossref



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.