Allometric Equation for Pinang (Areca catechu) Biomass and C Stocks

Cahyo Prayogo, Rika Ratna Sari, Degi Harja Asmara, Subekti Rahayu, Kurniatun Hairiah

Abstract


Pinang nut (Areca catechu L.) is a major agroforestry crops in Papua with high economic value. This study developed allometric equations for estimating Pinang biomass on the basis of stem diameter and height by destructive sampling inagroforestry systems. Aboveground biomass was measured and linked to plant stem diameter at various heights (0.13 and 130 cm above the ground) and plant height. The resultant equation was used for biomass estimates in various agroforestry systems with Pinang trees, with total of 18 plots differentiated in bottom, middle and upper slope positions. As expected for palm trees, plant height is a better predictor (Y = 0.816 H1.42; R2 = 0.89) of biomass than stem diameter, with equal results for diameter measurements at 13 or 130 cm height (Y = 0.0689 D2.59; R2 = 0.74). Best results were for an equation combining diameter and plant height: Y = 0.03883*H*D1.2; R2 = 0.96. Agroforestry systems on the upper slopes had the highest carbon stocks (38.8 Mg ha-1) than the middle and lower slopes (25.9 and 22.5 Mg ha-1, respectively). Aboveground carbon stocks of Pinang in study area ranged from 0.96 to 20.9 kg C tree-1 with an average of 10.1 kg C tree-1.

Keywords


Agroforestry; C sequestration; Stem diameter; Tree height

Full Text:

PDF

References


Arjungi, K. N. (1976). Areca nut: a review. Arzneimittel-Forschung, 26(5), 951–956. Retrieved from crossref

Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., … Vasquez Martinez, R. (2004). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10(5), 545–562. crossref

Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), 1684–1694. crossref

Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper (Vol. 134). Retrieved from website

Brown, S., Delaney, M., & Shoch, D.(2001). Carbon measurement and monitoring plan for bottomland hardwood plantings in the Mississippi valley region. Arlington, Virginia: Winrock International.

Calvo-Alvarado, J. C., McDowell, N. G., & Waring, R. H. (2008). Allometric relationships predicting foliar biomass and leaf area: sapwood area ratio from tree height in five Costa Rican rain forest species. Tree Physiology, 28(11), 1601–1608. crossref

Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., … Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. crossref

Cole, T. G., & Ewel, J. J. (2006). Allometric equations for four valuable tropical tree species. Forest Ecology and Management, 229(1–3), 351–360. crossref

Corley, R. H. V., & Tinker, P. B. (Eds.). (2003). The oil palm (4th ed., Vol. 41). Oxford, UK: Blackwell Publishing. crossref

Da Silva, F., Suwa, R., Kajimoto, T., Ishizuka, M., Higuchi, N., & Kunert, N. (2015). Allometric equations for estimating biomass of Euterpe precatoria, the most abundant palm species in the Amazon. Forests, 6(2), 450-463. crossref

Delaney, M., Brown, S., & Powell, M. (1999). Carbon-offset report for the noel kempff climate action project. Report to The Nature Conservancy. Arlington,VA: Winrock International.

Devakumar, A.S., Babu, K., Eashwar Reddy,N.V., &Anand, B.(2012). Carbon stock assessment in Arecanut and shade trees of Coffee and Cardamom plantations. Indian Journal of Agroforestry, 14(1), 80-83.

Dewi, S., Khasanah, N., Rahayu, S., Ekadinata, A., & van Noordwijk, M. (2009). Carbon footprint of Indonesian palm oil production: a pilot study. Bogor, Indonesia. Retrieved from PDF

Frangi, J. L., & Lugo, A. E. (1985). Ecosystem dynamics of a subtropical floodplain forest. Ecological Monographs, 55(3), 351–369. crossref

Germer, J., & Sauerborn, J. (2008). Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environment, Development and Sustainability, 10(6), 697–716. crossref

Goodman, R. C., Phillips, O. L., del Castillo Torres, D., Freitas, L., Cortese, S. T., Monteagudo, A., & Baker, T. R. (2013). Amazon palm biomass and allometry. Forest Ecology and Management, 310, 994–1004. crossref

Gupta, P. C., & Warnakulasuriya, S. (2002). Global epidemiology of areca nut usage. Addiction Biology, 7(1), 77–83. Retrieved from website

Hairiah, K., & Rahayu, S. (2007). Pengukuran “karbon tersimpan” di berbagai macam penggunaan lahan. Bogor; Malang, Indonesia: World Agroforestry Centre - ICRAF, SEA Regional Office; University of Brawijaya. Retrieved from PDF

Hairiah, K., Dewi, S., Agus, F., Velarde, S., Ekadinata, A., Rahayu, S., & van Noordwijk, M. (2010). Measuring carbon stocks across land use systems: a manual. Bogor, Indonesia: World Agroforestry Centre (ICRAF), SEA Regional Office. Retrieved from PDF

Henson, I. E. (2003). The Malaysian national average oil palm: concept and evaluation. Oil Palm Bulletin, 2003(46), 15–27.

Kenzo, T., Furutani, R., Hattori, D., Kendawang, J. J., Tanaka, S., Sakurai, K., & Ninomiya, I. (2009). Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia. Journal of Forest Research, 14, 365. crossref

Khan, M. N. I., & Faruque, O. (2010). Allometric relationships for predicting the stem volume in a Dalbergia sissoo Roxb. plantation in Bangladesh. IForest Biogeosciences and Forestry, 3, 153–158. crossref

Khan, M. N. I., Suwa, R., & Hagihara, A. (2005). Allometric relationships for estimating the aboveground phytomass and leaf area of mangrove Kandelia candel (L.) Druce trees in the Manko Wetland, Okinawa Island, Japan. Trees, 19(3), 266–272. crossref

Khasanah, N., van Noordwijk, M., & Ningsih, H. (2015). Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils. Cogent Environmental Science, 1(1), 1119964. crossref

Kiyono, Y., Monda, Y., Toriyama, J., Chaddy, A., KahJoo, G., & Melling, L. (2015). Destructive sampling method for estimating the biomasses of African oil palm (Elaeis guineensis) plantations on tropical peatland. Bulletin of the Forestry and Forest Products Research Institute, Ibaraki, 14(3), 147–158. Retrieved from PDF

Kumar, B. M. (2006). Agroforestry: the new old paradigm for Asian food security. Journal of Tropical Agriculture, 44(1/2), 1–14. Retrieved from website

Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T. R., Ojo, L. O., … Wöll, H. (2009). Increasing carbon storage in intact African tropical forests. Nature, 457, 1003–1006. crossref

Lewis, S. L., Phillips, O. L., Baker, T. R., Lloyd, J., Malhi, Y., Almeida, S., … Vinceti, B. (2004). Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society B, Biological Sciences, 359(1443), 421–436. crossref

Maulana, S. I., Wibisono, Y., & Utomo, S. (2016). Development of local allometric equation to estimate total aboveground biomass in Papua tropical forest. Indonesian Journal of Forestry Research, 3(2), 107–118. crossref

Mulia, R., Widayati, A., Suyanto, Agung, P., & Zulkarnain, M. T. (2014). Low carbon emission development strategies for Jambi, Indonesia: simulation and trade-off analysis using the FALLOW model. Mitigation and Adaptation Strategies for Global Change, 19(6), 773–788. crossref

Návar, J. (2009). Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest Ecology and Management, 257(2), 427–434. crossref

Palm, C., Tomich, T., van Noordwijk, M., Vosti, S., Gockowski, J., Alegre, J., & Verchot, L. (2004). Mitigating GHG emissions in the humid tropics: Case studies from the alternatives to slash-and-burn program (ASB). Environment, Development and Sustainability, 6(1–2), 145–162. crossref

Penot, E., Chambon, B., & Wibawa, G. (2017). An history of rubber agroforestry systems development in Indonesia and Thailand as alternatives for a sustainable agriculture and income stability. In Proceedings of International Rubber Conference 2017 (pp. 1–26). Bali. Retrieved from PDF

Rahayu, S., Khasanah, N., &Asmawan, T. (2011). Above and belowground carbon stock. In: A. Widayati, S. Suyanto, & M. van Noordwijk (Eds.), Towards reduced emissions in a high-stake district REALU project design for Tanjung Jabung Barat (Tanjabar), Jambi, Indonesia (pp. 59-73). Project Report. Bogor: World Agroforestry Centre (ICRAF) Southeast Asia.

Sujatha, S., & Bhat, R. (2013). Impact of drip fertigation on arecanut-cocoa system in humid tropics of India. Agroforestry Systems, 87(3), 643–656. crossref

Wang, J., Zhang, C., Xia, F., Zhao, X., Wu, L., & von Gadow, K. (2011). Biomass structure and allometry of Abies nephrolepis (Maxim) in northeast China. Silva Fennica, 45(2), 113. crossref

Zomer, R. J., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., … Wang, M. (2016). Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports, 6, 29987. crossref




DOI: http://doi.org/10.17503/agrivita.v40i3.1124

Copyright (c) 2018 UNIVERSITAS BRAWIJAYA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.