Analysis of Agricultural Drought in East Java Using Vegetation Health Index
Abstract
Keywords
Full Text:
PDFReferences
Aldrian, E., & Susanto, R. D. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23(12), 1435–1452. crossref
Bey, A., Pramudia, A., June, T., & Amien, L. I. (2003). Analisis anomali iklim dan dampaknya terhadap ketersediaan air di sentra produksi pangan di Pulau Jawa [The analysis of climate and its impact on water availability in food production centers, Java Island]. Bogor, ID: IPB. Retrieved from website
BPS – Statistics of Jawa Timur Province. (2015). Jawa Timur dalam angka 2015 [Jawa Timur in figures 2015]. Surabaya, ID: CV. Media Konstruksi. Retrieved from PDF
Chopra, P. (2006). Drought risk assessment using remote sensing and GIS: A case study of Gujarat (Master Thesis). Retrieved from ITC Library, The Netherlands (PDF)
CPC. (2015). Cold & warm episodes by season. National Weather Service, National Oceanic and Atmospheric Administration. Retrieved from website
Dalezios, N. R., Blanta, A., Spyropoulos, N. V., & Tarquis, A. M. (2014). Risk identification of agricultural drought for sustainable agroecosystems. Natural Hazards and Earth System Sciences, 14(9), 2435–2448. crossref
Domenikiotis, C., Spiliotopoulos, M., Tsiros, E., & Dalezios, N. R. (2004). Early cotton yield assessment by the use of the NOAA/AVHRR derived Vegetation Condition Index (VCI) in Greece. International Journal of Remote Sensing, 25(14), 2807-2819. crossref
Fadholi, A. (2013). Studi dampak El Nino dan Indian Ocean Dipole (IOD) terhadap curah hujan di Pangkalpinang [Study the impact of El Nino and Indian Ocean Dipole (IOD) on rainfall in Pangkalpinang]. Jurnal Ilmu Lingkungan, 11(1), 43-50. crossref
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., … Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2, 150066. crossref
Ghaleb, F., Mario, M., & Sandra, A. (2015). Regional landsat-based drought monitoring from 1982 to 2014. Climate, 3(3), 563–577. crossref
Hermawan, E. (2010). Pengelompokkan pola curah hujan yang terjadi di beberapa kawasan P. Sumatera berbasis hasil analisis teknik spektral [Grouping of rainfall pattern that happened in some region of Sumatra Island based on spectral technique analysis result]. Jurnal Meteorologi dan Geofisika, 11(2), 75-85. Retrieved from website
Holbrook, N. J., Davidson, J., Feng, M., Hobday, A. J., Lough, J. M., McGregor, S., & Risbey, J. S. (2009). El Niño – Southern Oscillation. In E. S. Poloczanska, A. J. Hobday & A. J. Richardson (Eds.), Report card of marine climate change for Australia 2009. Southport, AU: NCCARF. Retrieved from PDF
Irawan, B. (2006). Fenomena anomali iklim El Nino dan La Nina: Kecenderungan jangka panjang dan pengaruhnya terhadap produksi pangan [The phenomenon of El Nino and La Nina climate anomalies: Long-term trends and their effects on food production]. Forum Penelitian Agro Ekonomi, 24(1), 28-5. crossref
Khalil, A. A., Abdel-Wahab, M. M., Hassanein, M. K., Ouldbdey, B., Katlan, B., & Essa, Y. H. (2013). Drought monitoring over Egypt by using MODIS land surface temperature and normalized difference vegetation index. Nature and Science, 11(11), 116-122. Retrieved from PDF
Kogan, F. N. (2001). Operational space technology for global vegetation assessment. Bulletin of the American Meteorological Society, 82(9), 1949–1964. crossref
Ministry of Agriculture. (2013). Statistik makro sektor pertanian 2013 [Macro statistics for agricultural sector 2013]. Jakarta, ID: Pusat Data dan Sistem Informasi Pertanian, Kementerian Pertanian. Retrieved from PDF
Rahman, A., Roytman, L., Krakauer, N. Y., Nizamuddin, M., & Goldberg, M. (2009). Use of vegetation health data for estimation of aus rice yield in Bangladesh. Sensors, 9(4), 2968–2975. crossref
Rocha, A. V., & Shaver, G. R. (2009). Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology, 149(9), 1560–1563. crossref
Skakun, S., Kussul, N., Kussul, O., & Shelestov, A. (2014). Quantitative estimation of drought risk in Ukraine using satellite data. Paper presented at Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, Quebec City, Canada, 13-18 July. Quebec City, CA: IEEE. Retrieved from website
Wang, H., Lin, H., & Liu, D. (2014). Remotely sensed drought Index and its responses to meteorological drought in Southwest China. Remote Sensing Letters, 5(5), 413–422. crossref
Xiao, X., Braswell, B., Zhang, Q., Boles, S., Frolking, S., & Moore, B. (2003). Sensitivity of vegetation indices to atmospheric aerosols: Continental-scale observations in Northern Asia. Remote Sensing of Environment, 84(3), 385–392. crossref
Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices. Environmental Reviews, 19, 333–349. crossref
DOI: http://doi.org/10.17503/agrivita.v40i1.1080
Copyright (c) 2017 UNIVERSITAS BRAWIJAYA
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.