Stability of Four New Sources of Bacterial Leaf Blight Resistance in Thailand Obtained from Indigenous Rice Varieties

Arthit Sribunrueang, Sompong Chankaew, Petcharat Thummabenjapone, Jirawat Sanitchon


Bacterial leaf blight (BLB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious diseases in rice production. Breeding varieties specifically for their resistance to BLB disease is therefore an efficient and cost-effective strategy. However, the resistance gene for BLB can be race and non-race specific, meaning it is often overcome by the pathogen. The identification of new sources of resistance genes for Xoo is crucial in rice breeding programmes. In this study, six rice varieties were assessed using six Xoo isolates in multiple screening conditions. The GGE biplot analysis considers both genotype (G) and genotype environment (GE) interaction effects and demonstrates GE interaction. The first two principal components (PCs) accounted for 95.46% of the total GE variation in the data. Based on lesion length and stability performance, Phaladum was the most ideal genotype against all Xoo isolates in the four screening conditions. The results relayed that Phaladum indigenous rice varieties could be considered as new sources of bacterial leaf blight resistance in Thailand. In the future, the BLB resistance gene in this variety will be identified in regard to mode of inheritance and used as parental line in rice breeding programmes for resistance to BLB.


Bacterial leaf blight; GGE biplot; rice; stability; Xanthomonas oryzae

Full Text:



Akhtar, M. A., Abbasi, F. M., Ahmad, H., Shahzad, M., Shah, M. A., & Shah, A. H. (2011). Evaluation of rice germplasm against Xanthomonas oryzae causing bacterial leaf blight. Pakistan Journal of Botany, 43(6), 3021-3023. Retrieved from PDF

Akter, A., Hasan, M. J., Kulsum, U., Rahman, M. H., Khatun, M., & Islam, M. R. (2015). GGE biplot analysis for yield stability in multi-environment trials of promising hybrid rice (Oryza sativa L.). Bangladesh Rice Journal, 19(1), 1-8. crossref

Alam, A. K. M. M., Somta, P., Jompuk, C., Chatwachirawong, P., & Srinives, P. (2014). Evaluation of mungbean genotypes based on yield stability and reaction to mungbean yellow mosaic virus disease. Plant Pathology Journal, 30(3), 261–268. crossref

Chanlakhon, A., Thammabenjapon, P., & Sanitchon, J. (2012). Evaluation of resistance to bacterial leaf blight in low land rice germplasm. Khon Kaen Agriculture Journal, 40(4), 48-52. Retrieved from PDF

Collard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 557–572. crossref

Das, B., Sengupta, S., Prasad, M., & Ghose, T. K. (2014). Genetic diversity of the conserved motifs of six bacterial leaf blight resistance genes in a set of rice landraces. BMC Genetics, 2014, 1-15. crossref

Flor, H. H. (1971). Current status of the gene-for-gene concept. Annual Review of Phytopathology, 9(1), 275–296. crossref

Fotokian, M. H., & Agahi, K. (2014). Biplot analysis of genotype by environment for cooking quality in hybrid rice: A tool for line x tester data. Rice Science, 21(5), 282–287. crossref

Gitonga, H. W., Ojwang, P. P. O., Macharia, G. K., & Njau, P. N. (2016). Evaluation of advanced bread wheat genotypes for resistance to stem rust and yield stability. African Journal of Plant Science, 10(6), 111-120. crossref

Gregorio, G. B., Dharmawansa, S. & Mendoza, R.D. (1997). Screening rice for salinity tolerance.

IRRI. Discussion Paper Series No. 22. International Rice Research Institute, Manila, pp.1–30.

Idowu, O. O., Salami, A. O., Ajayi, S. A., Akinwale, R. A., & Sere, Y. (2013). Varietal resistance of rice to blast fungus Magnaporthe oryzae at two sites in southwestern Nigeria. African Journal of Biotechnology, 12(33), 5173-5182. crossref

Jenns, A. E., Leonard, K. J., & Moll, R. H. (1982). Stability analyses for estimating relative durability of quantitative resistance. Theoretical and Applied Genetics, 63(2), 183–192. crossref

Kang, M. S. (1992). Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agronomy Journal, 85(3), 754-757. crossref

Khan, M. A., Naeem, M., & Iqbal, M. (2014). Breeding approaches for bacterial leaf blight resistance in rice (Oryza sativa L.), current status and future directions. European Journal of Plant Pathology, 139(1), 27-37. crossref

Khush, G. S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology, 59(1), 1–6. crossref

Khush, G. S., Mackill, D. J., & Sidhu, G. S. (1989). Breeding rice for resistance to bacterial blight. In Bacterial of blight rice (pp. 207-218). Manila, PH: International Rice Research Institute.

Korinsak, S., Sirithanya, P., & Toojinda, T. (2009). Identification of SSR markers linked to a bacterial blight resistance gene in rice cultivar ‘Pin Kaset’. KKU Research Journal, 9(2), 16-21. Retrieved from website

Korinsak, S., Sriprakhon, S., Sirithanya, P., Jairin, J., Korinsak, S., Vanavichit, A., & Toojinda, T. (2009). Identification of microsatellite markers (SSR) linked to a new bacterial blight resistance gene xa33 (t) in rice cultivar “Ba7.” Maejo International Journal of Science and Technology, 3(2), 235–247. Retrieved from website

Lakew, T., Tariku, S., Alem, T., & Bitew, M. (2014). Agronomic performances and stability analysis of upland rice genotypes in North West Ethiopia. International Journal of Scientific and Research Publications, 4(4), 1-9. Retrieved from PDF

Latif, M. A., Rahman, M. M., Kabir, M. S., Ali, M. A., Islam, M. T., & Rafii, M. Y. (2011). Genetic diversity analyzed by quantitative traits among rice (Oryza sativa L.) genotypes resistant to blast disease. African Journal of Microbiology Research, 5(25), 4383–4391. crossref

Ou, S. H. (1985). Rice Diseases (2nd ed.). Slough, UK: Commonwealth Agricultural Bureaux.

Pinta, W., Toojinda, T., Thummabenjapone, P., & Sanitchon, J. (2013). Pyramiding of blast and bacterial leaf blight resistance genes into rice cultivar RD6 using marker assisted selection. African Journal of Biotechnology, 12(28), 4432-4438. crossref

R Development Core Team. (2010). R: A language and environment for statistical computing [Computer programme]. Retrieved from website

Reddy, P. R., & Mohanty, S. K. (1981). Epidemiology of the kresek phase of bacterial blight of rice. Plant Disease, 65(7), 578-580. Retrieved from PDF

Sharma, M., Babu, T. K., Gaur, P. M., Ghosh, R., Rameshwar, T., Chaudhary, R. G., Upadhyay, J. P., Gupta, O., Saxena, D. R., Kaur, L., Dubey, S.C., Anandani, V. P., Harer, P. N., Rathore, A., & Pande, S. (2012). Identification and multi-environment validation of resistance to Fusarium oxysporum f. sp. ciceris in chickpea. Field Crops Research, 135, 82-88. crossref

Somsana, P., Wattana, P., Suriharn, B., & Sanitchon, J. (2013). Stability and genotype by environment interactions for grain anthocyanin content of thai black glutinous upland rice (Oryza sativa). SABRAO Journal of Breeding and Genetics, 45(3), 523-532. Retrieved from PDF

Sreewongchai, T., Toojinda, T., Thanintorn, N., Kosawang, C., Vanavichit, A., Tharreau, D., & Sirithunya, P. (2009). Development of elite indica rice lines with wide spectrum of resistance to Thai blast isolates by pyramiding multiple resistance QTLs. Plant Breeding, 129(2), 176-180. crossref

Sun, X., Cao, Y., Yang, Z., Xu, C., Li, X., Wang, S., & Zhang, Q. (2004). Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. The Plant Journal, 37(4), 517-527. crossref

Tabien, R. E., Samonte, S. O. P. B., Abalos, M. C., & San Gabriel, R. C. (2008). GGE biplot analysis of performance in farmers' fields, disease reaction and grain quality of bacterial leaf blight-resistant rice genotypes. Philippine Journal of Crop Science, 33(1), 03-19. Retrieved from PDF

Thakur, R. P., Shetty, K. G., & King, S. B. (1992). Selection for host-specific virulence in asexual populations of Sclerospora graminicola. Plant Pathology, 41, 626–632. crossref

Twizeyimana, M., Ojiambo, P. S., Ikotun, T., Ladipo, J. L., Hartman, G. L., & Bandyopadhyay, R. (2008). Evaluation of soybean germplasm for resistance to soybean rust (Phakopsora pachyrhizi) in Nigeria. Plant Disease, 92(6), 947–952. crossref

Win, K. M., Korinsak, S., Jantaboon, J., Siangliw, M., Lanceras-Siangliw, J., Sirithunya, P., Vanavichit, A., Pantuwan, G., Jongdee, B., Sidhiwong, N., & Toojinda, T. (2012). Breeding the Thai jasmine rice variety KDML105 for non-age-related broad-spectrum resistance to bacterial blight disease based on combined marker-assisted and phenotypic selection. Field Crops Research, 137, 186-194. crossref

Yan, W. (2001). GGEbiplot - A windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy Journal, 93(5), 1111–1118. crossref

Yan, W., & Falk, D. E. (2002). Biplot analysis of host-by-pathogen data. Plant Disease, 86(12), 1396–1401. crossref

Yan, W. & Hunt, L. A. (2002). Biplot analysis of diallel data. Crop Science, 42, 21-30. Retrieved from PDF

Yoshida, S., Forno, D. A., Cock, J. H., & Gomez, K. A. (Eds.). (1976). Routine procedures for growing rice plants in culture solution. In Laboratory manual for physiological studies of rice (pp. 61-66). Laguna, PH: The International Rice Research Institute.


Copyright (c) 2017 AGRIVITA Journal of Agricultural Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.