Analysis of Variance, Heritability, Correlation and Selection Character of M1 V3 Generation Cassava (Manihot esculenta Crantz) Mutants

Rahmi Henda Yani, Nurul Khumaida, Sintho Wahyuning Ardie, Muhamad Syukur


Information about genetic variability and correlation between qualitative character and yield are important to support a selection program. The objective of this research was to determine genetic variability, heritability, and path analysis of M1 V3 cassava mutants’ characters. This research was conducted at Bogor Agricultural University Experimental Field Research from May 2014 to May 2015. This research used 32 mutants from five cassava parent lines which were Malang-4 and Adira-4 (national varieties), UJ-5 (Introduction variety from Thailand), and two local genotypes from Halmahera which were Jame-jame and Ratim. The results showed that gamma ray irradiation increased variability from five cassava genotypes. Characters that had high heritability were length of leaf lobe, lengthof petiole, stem diameter, and the height of plant. The path correlation analysis showed that number of tubers, number of economic tuber (> 20 cm), height to first branchingand stem diameter had direct correlation with tuber mass per plant. The characters can be used for the selection of M1 V4 generation.


Character; Heritability; Path analysis; Selection

Full Text:



Avasthi, S., Gautam, A. K., & Bhadauria, R. (2010). Antifungal activity of plant products against Aspergillus niger: A potential application in the control of a spoilage fungus. Biological Forum — An International Journal, 2(1), 53-55. Retrieved from %20SHUBHI.pdf

Baptista, E. B., Zimmermann-Franco, D. C., Lataliza, A. A. B., & Raposo, N. R. B. (2015). Chemical composition and antifungal activity of essential oil from Eucalyptus smithii against dermatophytes. Revista Da Sociedade Brasileira de Medicina Tropical, 48(6), 746–752. 0037-8682-0188-2015

Cheng, S. S., Huang, C. G., Chen, Y. J., Yu, J. J., Chen, W. J., & Chang, S. T. (2009). Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresource Technology, 100(1), 452–456. http:/ /

Cooksley, V. G. (1996). Aromatherapy: A lifetime guide to healing with essential oils. Upper Saddle River, NJ, USA: Prentice Hall Press.

Cumagun, C. J. R., Aguirre, J. A., Relevante, C. A., & Balatero, C. H. (2010). Pathogenicity and aggressiveness of Fusarium oxysporum Schl. in bottle gourd and bitter gourd. Plant Protection Science, 46(2), 51–58. Retrieved from

Damjanovic-Vratnica, B., Dakov, T., Sukovic, D., & Damjanovic, J. (2011). Antimicrobial effect of essential oil isolated from Eucalyptus globulus Labill. from Montenegro. Czech Journal of Food Sciences, 29(3), 277–284. Retrieved from http:// pdf

Dhanasekaran, D., Thajuddin, N., & Panneerselvam, A. (2008). An antifungal compound: 4’ phenyl-1- napthyl-phenyl acetamide from Streptomyces sp. DPTB16. Facta Universitatis: Medicine and Biology, 15(1), 7–12. Retrieved from http://facta. pdf

Filomeno, C. A., Barbosa, L. C. A., Pereira, J. L., Pinheiro, A. L., Fidéncio, P. H., & Montanari, R. M. (2016). The chemical diversity of Eucalyptus spp. essential oils from plants grown in Brazil. Chemistry and Biodiversity, 13(12), 1656-1665.

Fiori, A. C. G., Schwan-Estrada, K. R. F., Stangarlin, J. R., Vida, J. B., Scapim, C. A., Cruz, M. E. S., & Pascholati, S. F. (2000). Antifungal activity of leaf extracts and essential oils of some medicinal plants against Didymella bryoniae. Journal of Phytopathology, 148(7–8), 483–487. http://doi. org/10.1046/j.1439-0434.2000.00524.x

Fletcher, J., Bender, C., Budowle, B., Cobb, W. T., Gold, S. E., Ishimaru, C. A., … Tolin, S. A. (2006). Plant pathogen forensics: Capabilities, needs, and recommendations. Microbiology and Molecular Biology Reviews, 70(2), 450–471. 10.1128/MMBR.00022-05

Gakuubi, M. M., Maina, A. W., & Wagacha, J. M. (2017). Antifungal Activity of Essential Oil of Eucalyptus camaldulensis Dehnh. against Selected Fusarium spp. International Journal of Microbiology, 2017, 1–7.

Hendraswari, I., & Bhumibhamon, S. (2009). Evaluasi pertumbuhan uji provenans Eucalyptus urophylla S.T. Blake Umur 20 Tahun di Lad Krating, Chachoengsao, Thailand [Evaluation of provenance trial of Eucalyptus urophylla S.T. blake growth age 20-year-old in Lad Krating, Chachoengsao Province, Thailand]. Jurnal Ilmu Kehutanan, 3(2), 74-84. Retrieved from

Kim, E., & Park, I. K. (2012). Fumigant antifungal activity of myrtaceae essential oils and constituents from Leptospermum petersonii against three aspergillus species. Molecules, 17(9), 10459– 10469. 459

Kocić-Tanackov, S. D., & Dimić, G. R. (2013). Antifungal activity of essential oils in the control of foodborne fungi growth and mycotoxin biosynthesis in food. In A. Méndez-Vilas (Ed.), Microbial pathogens and strategies for combating them: science, technology and education (Vol. 2, pp. 838-849). Badajoz, ES: Formatex Research Center.

Liu, X., Chen, Q., Wang, Z., Xie, L., & Xu, Z. (2008). Allelopathic effects of essential oil from Eucalyptus grandis × E. urophylla on pathogenic fungi and pest insects. Frontiers of Forestry in China, 3(2), 232–236. 461-008-0036-5

López-Meneses, A. K., Plascencia-Jatomea, M., LizardiMendoza, J., Rosas-Burgos, E. C., LuqueAlcaraz, A. G., & Cortez-Rocha, M. O. (2015). Antifungal and antimycotoxigenic activity of essential oils from Eucalyptus globulus, Thymus capitatus and Schinus molle. Food Science and Technology, 35(4), 664–671. 90/1678-457X.6732

Mousavi, S. M., & Raftos, D. (2012). In Vitro antifungal activity of a new combination of essential oils against some filamentous fungi. Middle-East Journal of Scientific Research, 11(2), 156-161. Retrieved from r11(2)12/4.pdf

Pujiarti, R., Yoshito, O., & Hideaki, I. (2012). Antioxidant, anti-hyaluronidase and antifungal activities of Melaleuca leucadendron Linn. leaf oils. Journal of Wood Science, 58(5), 429–436. 10.1007/s10086-012-1270-x

Sebei, K., Sakouhi, F., Herchi, W., Khouja, M. L., & Boukhchina, S. (2015). Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biological Research, 48(1), 7. 6287-48-7

Shaaban, H. A. E., El-Ghorab, A. H., & Shibamoto, T. (2012). Bioactivity of essential oils and their volatile aroma components: Review. Journal of Essential Oil Research, 24(2), 203–212. http://

Sharma, R. (2012). Pathogenecity of Aspergillus niger in plants. Cibtech Journal of Microbiology, 1(1), 47-51. Retrieved from a45f/7f9efb98716fb00b5282bf16fce90b2f5477. pdf

Siddique, S., Perveen, Z., Nawaz, S., Shahzad, K., & Ali, Z. (2015). Chemical composition and antimicrobial activities of essential oils of six species from family Myrtaceae. Journal of Essential Oil Bearing Plants, 18(4), 950–956.

Siramon, P., Ohtani, Y., & Ichiura, H. (2013). Chemical composition and antifungal property of Eucalyptus camaldulensis leaf oils from Thailand. Records of Natural Products, 7(1), 49–53. http://

Somda, I., Leth, V., & Sérémé, P. (2007). Antifungal effect of Cymbopogon citratus, Eucalyptus camaldulensis and Azadirachta indica oil extracts on sorghum seed-borne fungi. Asian Journal of Plant Sciences, 6(8), 1182–1189.

Vilela, G. R., de Almeida, G. S., D’Arce, M. A. B. R., Moraes, M. H. D., Brito, J. O., da Silva, M. F. das G. F., … da Gloria, E. M. (2009). Activity of essential oil and its major compound, 1,8-cineole, from Eucalyptus globulus Labill., against the storage fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. Journal of Stored Products Research, 45(2), 108–111.

Wang, S. Y., Chen, P. F., & Chang, S. T. (2005). Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresource Technology, 96(7), 813–818.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.