Harvesting of Residual Soil Phosphorus on Intensive Shallot Farming in Brebes, Indonesia

Muliana Muliana, Arief Hartono, Syaiful Anwar, Anas Dinurohman Susila, Supiandi Sabiham

Abstract


Accumulated residual soil phosphorus (P) on shallots farming in Brebes can be harvested through the application of ameliorants or bio-fertilizers. The information on the effect of ameliorants and bio-fertilizers on soil P fractions is limited. The study objective was to evaluate the transformation of accumulated P to available forms by adding humic substance (CHS), bio-fertilizers (CBF), phosphate solubilizing bacteria (PSB), or phosphate solubilizing fungi (PSF) on soil from Brebes. The experiment was conducted in rhizobox that has two compartments, namely inner compartment (rooting area) and outside compartment (non-rooting area). Shallots were planted for 26 days, observed for their growth, and analyzed for their P absorption. Soil samples in rooting and non-rooting area were analyzed for their P fractions after planting. The results indicated that the addition of CHS, CBF, PSB or PSF increased the harvesting of residual soil P through its transformation to a more labile P as high as 0.67% in rooting area. The dynamic of transformation in rooting area gave better information of harvesting P. The capability of harvesting accumulated P was in the order of CBF, CHS, PSF and PSB. For harvesting residual P, addition of humic substance or bio-fertilizers should be made in the rooting area.

Keywords


Available P; Bio-fertilizers; Humic substance; P solubilizing microbes; P transformation

Full Text:

PDF

References


Agbede, T. M. (2010). Tillage and fertilizer effects on some soil properties, leaf nutrient concentrations, growth and sweet potato yield on an Alfisol in southwestern Nigeria. Soil and Tillage Research, 110(1), 25–32. crossref

Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 971. crossref

Andrians, D. D., Syekhfani, & Nuraini, Y. (2015). Pengaruh Aspergillus niger dan pupuk kandang ayam broiler terhadap ketersediaan dan serapan P serta pertumbuhan jagung pada andisol Cangar. Jurnal Tanah Dan Sumberdaya Lahan, 2(1), 163–169. Retrieved from website

Arcand, M. M., & Schneider, K. D. (2006). Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. Anais Da Academia Brasileira de Ciencias, 78(4), 791–807. crossref

Bhattacharyya, P., Chakrabarti, K., Chakraborty, A., & Nayak, D. C. (2005). Effect of municipal solid waste compost on phosphorous content of rice straw and grain under submerged condition. Archives of Agronomy and Soil Science, 51(4), 363–370. crossref

Chen, D., Hu, M., Guo, Y., Wang, J., Huang, H., & Dahlgren, R. A. (2017). Long-term (1980–2010) changes in cropland phosphorus budgets, use efficiency and legacy pools across townships in the Yongan watershed, eastern China. Agriculture, Ecosystems and Environment, 236, 166–176. crossref

Diep, C. N., & Hieu, T. N. (2013). Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kien Giang province, Vietnam. American Journal of Life Sciences, 1(3), 88–92. crossref

Eviati, & Sulaeman. (2012). Petunjuk teknis analisis kimia tanah, tanaman, air, dan pupuk. Bogor, ID: Balai Penelitian dan Pengembangan Pertanian, Departemen Pertanian.

Hanudin, E., Sukmawati, S. T., Radjagukguk, B., & Yuwono, N. W. (2014). The effect of humic acid and silicic acid on P adsorption by amorphous minerals. Procedia Environmental Sciences, 20, 402–409. crossref

Hartono, A., Anwar, S., Satwoko, A., Koyama, K., Omoto, T., Nakao, A., & Yanai, J. (2015). Phosphorus fractions of paddy soils in Java, Indonesia. Journal of International Society for Southeast Asian Agricultural Sciences, 21(2), 20–30. Retrieved from website

Hartono, A., Indriyati, L. T., & Selvi. (2013). Effects of humic substances on phosphorus sorption and desorption characteristics of soils high in iron and aluminum oxides. Journal of International Society for Southeast Asian Agricultural Sciences, 19(1), 87–94. Retrieved from website

Haygarth, P. M., Jarvie, H. P., Powers, S. M., Sharpley, A. N., Elser, J. J., Shen, J., … Liu, X. (2014). Sustainable phosphorus management and the need for a long-term perspective: The legacy hypothesis. Environmental Science and Technology, 48(15), 8417–8419. crossref

Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil, 237(2), 173–195. crossref

IAARD. (2006). Pemupukan fosfat dan kalium tanah sawah, Kabupaten Brebes. Bogor, ID: Badan Penelitian dan Pengembangan Pertanian, Departemen Pertanian.

IPNI. (2013). A closer look at phosphorus uptake by plants, pp. 1–4. Retrieved from PDF

Khan, A. A., Jilani, G., Akhtar, M. S., Saqlan, S. M., & Rasheed, M. (2009). Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. Journal of Agriculture and Biological Sciences, 1(1), 48–58. Retrieved from website

Kovar, J. L., & Claassen, N. (2005). Soil-root interactions and phosphorus nutrition of plants. In J. T. Sims & A. N. Sharpley (Eds.), Phosphorus: Agriculture and the Environment (Vol. 46, pp. 379–414). Madison, WI: American Society of Agronomy. crossref

Lee, S. B., Lee, C. H., Jung, K. Y., Park, K. Do, Lee, D., & Kim, P. J. (2009). Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy. Soil and Tillage Research, 104(2), 227–232. crossref

Ludwick, A. E. (1998). Phosphorus mobility in perspective. News & Views. Norcross, USA: PPI and PPIC Publisher. Retrieved from website

Mehrvarz, S., Chaichi, M. R., & Alikhani, H. A. (2008). Effect of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on forage and grain quality of barely (Hordeum vulgare L.). American-Eurasian Journal of Agricultural & Environmental Sciences, 3(6), 822–828. Retrieved from PDF

Muliana, Anwar, S., Hartono, A., D. Susila, A., & Sabiham, S. (2018). Pengelolaan dan pemupukan fosfor dan kalium pada pertanian intensif bawang merah di empat desa di Brebes. Jurnal Hortikultura Indonesia, 9(1), 27–37. Retrieved from website

Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. crossref

Nash, D. M., Haygarth, P. M., Turner, B. L., Condron, L. M., McDowell, R. W., Richardson, A. E., … Heaven, M. W. (2014). Using organic phosphorus to sustain pasture productivity: A perspective. Geoderma, 221–222, 11–19. crossref

Plante, A. F. (2007). Soil biogeochemical cycling of inorganic nutrients and metals. In E. A. Paul (Ed.), Soil microbiology, ecology and biochemistry (3rd ed., pp. 389–432). New York: Academic Press. crossref

Powers, S. M., Bruulsema, T. W., Burt, T. P., Chan, N. I., Elser, J. J., Haygarth, P. M., … Zhang, F. (2016). Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 9, 353–356. crossref

Richardson, M. J. (2001). Coprophilous fungi from Brazil. Brazilian Archives of Biology and Technology, 44(3), 283–289. crossref

Ringeval, B., Nowak, B., Nesme, T., Delmas, M., & Pellerin, S. (2014). Contribution of anthropogenic phosphorus to agricultural soil fertility and food production. Global Biogeochemical Cycles, 28(7), 743–756. crossref

Rodrigues, M., Pavinato, P. S., Withers, P. J. A., Teles, A. P. B., & Herrera, W. F. B. (2016). Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna. Science of the Total Environment, 542(Part B), 1050–1061. crossref

Rowe, H., Withers, P. J. A., Baas, P., Chan, N. I., Doody, D., Holiman, J., … Weintraub, M. N. (2016). Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutrient Cycling in Agroecosystems, 104(3), 393–412. crossref

Sattari, S. Z., Bouwman, A. F., Giller, K. E., & van Ittersum, M. K. (2012). Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proceedings of the National Academy of Sciences, 109(16), 6348–6353. crossref

Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., … Zhang, F. (2011). Phosphorus dynamics: From soil to plant. Plant Physiology, 156(3), 997–1005. crossref

Tiecher, T., Santos, D. R. dos, Kaminski, J., & Calegari, A. (2012). Forms of inorganic phosphorus in soil under different long term soil tillage systems and winter crops. Revista Brasileira de Ciência Do Solo, 36(1), 271–282. crossref

Tiessen, H., & Moir, J. O. (1993). Characterization of available P by sequential extraction. In: M. R. Carter (Ed.), Soil sampling and methods of analysis (pp. 75-86). Boca Raton: Lewis Publishers. Retrieved from website

Wahyudi, I., & Handayanto, E. (2015). The potential of legume tree prunings as organic matters for improving phosphorus availability in an acid soil. Journal of Degraded and Mining Lands Management, 2(2), 259–266. Retrieved from website

Yan, X., Wang, D., Zhang, H., Zhang, G., & Wei, Z. (2013). Organic amendments affect phosphorus sorption characteristics in a paddy soil. Agriculture, Ecosystems and Environment, 175, 47–53. crossref

Yan, X., Wei, Z., Hong, Q., Lu, Z., & Wu, J. (2017). Phosphorus fractions and sorption characteristics in a subtropical paddy soil as influenced by fertilizer sources. Geoderma, 295, 80–85. crossref




DOI: http://doi.org/10.17503/agrivita.v40i3.1868

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.