The Evaluation of Chrysanthemum Clones Under Low Elevation

Lia Sanjaya, Budi Marwoto, Kurniawan Budiarto, Eka Fibrianty


Cultivation of chrysanthemum at low elevation was one effort to expand potential production areas. Under these circumstances, several environmental conditions might not be as conducive as in highland and deviate the plant from the original characters and potential yield. Fifteen promising variants derived from an unconventional breeding program were evaluated at two different elevations; 1200 and 250 m above sea level (asl) at Cianjur-West Java, Indonesia during hot season from April to September 2016. The experiment was designed as progenital selection to seek the adaptive genotypes on the targeted sites. The results showed that varietal differences existed among the tested clones when grown under highland and lowland. At lowland (250 m asl), all clones showed growth retardation expressed by the reduction of flower qualities with different degrees among genotypes. In standard group, only 2015-9 and 2015-15 that produced unchanged flower color, with acceptable plant height standard for cut flower. While in spray type, all tested clones produced flower with degraded floret color.


Characteristic; Chrysanthemum; Clone; Evaluation; Lowland

Full Text:



Adams, S. R., Valdés, V. M., & Fuller, D. (2009). The effects of day and night temperature on Chrysanthemum morifolium: Investigating the safe limits for temperature integration. Journal of Horticultural Science and Biotechnology, 84(6), 604–608.

Arjana, I. G. M., Situmeang, Y. P., & Suaria, I. N. (2015). Study of development potential chrysanthemum in Buleleng regency. International Journal on Advanced Science, Engineering and Information Technology, 5(5), 350–354.

Baskaran, V., Jayanthi, R., Janakiram, T., & Abirami, K. (2009). Studies on genetic variability, heritability and genetic advance in chrysanthemum. Journal of Horticultural Science, 4(2), 174-176. Retrieved from

Carvalho, S. M. P., Abi-Tarabay, H., & Heuvelink, E. (2005). Temperature affects Chrysanthemum flower characteristics differently during three phases of the cultivation period. Journal of Horticultural Science and Biotechnology, 80(2), 209–216.

da Silva Vieira, M. R., Lima, G. P. P., de Souza, A. V., Costa, P. N., Santos, C. M. G., de Sousa Alves. L., & de Oliveira, N. G. (2011). Effect of gibberellic acid on the quality of chrysanthemum (Dendranthema grandiflora L.) cv. Faroe. African Journal of Biotechnology, 10(71), 15933-15937.

Gantait, S. S., Pal, P., & Ghosdastdar, K. K. (2012). Phenotypic stability for flower yield and its components of some selected spray chrysanthemum cultivars. Acta Horticulturae, 937, 313–319.

Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10(Part A), 4–10.

Kahar, S. A. (2008). Effects of photoperiod on growth and flowering of Chrysanthemum morifolium Ramat cv. Reagan Sunny. Journal of Tropical Agriculture and Food Science, 36(2), 1–8. Retrieved from morifolium.pdf

Khaerunnisa, Rukmana, D., & Jusni. (2017). Agribusiness system of chrysanthemum cut flowers at PT. Bunga Indah Malino. International Journal of Science and Research, 6(8), 329-334. Retrieved from

Kjaer, K. H., & Ottosen, C. O. (2011). Growth of chrysanthemum in response to supplemental light provided by irregular light breaks during the night. Journal of the American Society for Horticultural Science, 136(1), 3–9. Retrieved from

Körner, O., & Challa, H. (2004). Temperature integration and process-based humidity control in chrysanthemum. Computers and Electronics in Agriculture, 43(1), 1–21.

Kurniasih, D., Ruswandi, D., Karmana, M. H., & Qosim, W. A. (2016). Variabilitas genotipe-genotipe mutan krisan (Dendranthema grandiflora Tzvelv.) generasi MV5 hasil irradiasi sinar gamma [Variability of mutant genotypes chrysanthemum (Dendranthema grandiflora Tzvelv.) fifth generations through gamma irradiation]. Jurnal Agrikultura, 27(3), 173-178. Retrieved from

Luo, R., Wei, H., Ye, L., Wang, K., Chen, F., Luo, L., … Zhong, Y. (2009). Photosynthetic metabolism of C3 plants shows highly cooperative regulation under changing environments: A systems biological analysis. Proceedings of the National Academy of Sciences, 106(3), 847–852.

FMA & SAF. (2016). Recommended grades & standards for fresh cut flowers. Newark, DE: Floral Marketing Association; Alexandria, VA: Society of American Florist. Retrieved from

Nurmalinda, & Hayati, N. Q. (2014). Preferensi konsumen terhadap krisan bunga potong dan pot [Consumer preferences chrysanthemum cut flowers and pot]. Jurnal Hortikultura, 24(4), 363-372.

Ochiai, M., Liao, Y., Shimazu, T., Takai, Y., Suzuki, K., Yano, S., & Fukui, H. (2015). Varietal differences in flowering and plant growth under night-break treatment with LEDs in 12 chrysanthemum cultivars. Environment Control in Biology, 53(1), 17–22.

Pärnik, T., Ivanova, H., & Keerberg, O. (2007). Photorespiratory and respiratory decarboxylations in leaves of C3 plants under different CO2 concentrations and irradiances. Plant, Cell and Environment, 30(12), 1535–1544.

Rochmatino, Santoso, I. B., & Dwiati, M. (2010). Peran paklobutrazol dan pupuk dalam mengendalikan tinggi tanaman dan kualitas bunga krisan pot [The role of paklobutrazol and fertilizer in controlling plant high and quality of chrysanthemums pot]. Biosfera, 27(2), 82-87.

Sanjaya, L., Marwoto, B., & Soehendi, R. (2015). Membangun industri bunga krisan yang berdaya saing melalui pemuliaan mutasi [Developing competitive chrysanthemum industry through mutation breeding]. Pengembangan Inovasi Pertanian, 8(1), 43-54.

Steen, M. (2014). Measuring price–quantity relationships in the Dutch flower market. Journal of Agricultural and Applied Economics, 46(2), 299-308. Retrieved from 169003/2/jaae626.pdf

van der Ploeg, A., Carvalho, S. M. P., & Heuvelink, E. (2009). Genotypic variation in the response to suboptimal temperature at different plant densities in cut chrysanthemum. Journal of the American Society for Horticultural Science, 134(1), 31-40. Retrieved from

van der Ploeg, A., Kularathne, R. J. K. N., Carvalho, S. M. P., & Heuvelink, E. (2007). Variation between cut chrysanthemum cultivars in response to suboptimal temperature. Journal of the American Society for Horticultural Science, 132(1), 52-59. Retrieved from

Walker, B. J., & Cousins, A. B. (2013). Influence of temperature on measurements of the CO2 compensation point: Differences between the Laisk and O2-exchange methods. Journal of Experimental Botany, 64(7), 1893–1905.

Wang, Y., Guo, Q., & Jin, M. (2009). Effects of light intensity on growth and photosynthetic characteristics of Chrysanthemum morifolium. Zhongguo Zhongyao Zazhi, 34(13), 1632–1635. Retrieved from

Yoginugraha, P. P. I., Wijaya, I M. A. S., & Nada, I M. (2017). Kualitas hasil tanaman krisan (Crhysanthemum) pada penambahan cahaya lampu led merah secara siklik [Quality of the results of chrysanthemum on the addition of light LED red in a cyclic manner]. Biosistem dan Teknik Pertanian, 5(1), 35-44. Retrieved from


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.