The Importance of Tree Height in Estimating Individual Tree Biomass while Considering Errors in Measurements and Allometric Models

Thuch Phalla, Tetsuji Ota, Nobuya Mizoue, Tsuyoshi Kajisa, Shigejiro Yoshida, Ma Vuthy, Sokh Heng

Abstract


This study evaluated the uncertainty of individual tree biomass estimated by allometric models by both including and excluding tree height independently. Using two independent sets of measurements on the same trees, the errors in the measurement of diameter at breast height and tree height were quantified, and the uncertainty of individual tree biomass estimation caused by errors in measurement was calculated. For both allometric models, the uncertainties of the individual tree biomass estimation caused by the use of a specific allometric model were also calculated. Finally, the overall uncertainty of individual tree biomass by combining the two uncertainties was calculated. The allometric model including tree height was 6 % more accurate than that excluding tree height when the uncertainty caused by allometric models became the only consideration. However, in terms of the uncertainty caused by measurement, the allometric model excluding tree height was three times more accurate than allometric model including tree height. As a result, the allometric model excluding tree height was 5 % more accurate than the allometric model including tree height when both causes of uncertainty, the allometric model and measurement errors were considered. In conclusion, errors in tree height measurement have the potential to increase the error of aboveground biomass estimation.

Keywords


Error propagation; Individual tree biomass; Measurement error; Tree height; Tropics

Full Text:

PDF

References


Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), 1684–1694. crossref

Berger, A., Gschwantner, T., McRoberts, R. E., & Schadauer, K. (2014). Effects of measurement errors on individual tree stem volume estimates for the Austrian national forest inventory. Forest Science, 60(1), 14–24. http://doi.org/10.5849/forsci.12-164

Böttcher, H., Eisbrenner, K., Fritz, S., Kindermann, G., Kraxner, F., McCallum, I., & Obersteiner, M. (2009). An assessment of monitoring requirements and costs of “Reduced Emissions from Deforestation and Degradation.” Carbon Balance and Management, 4(1), 7. http://doi.org/10.1186/1750-0680-4-7

Canadell, J. G., Le Quere, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., … Marland, G. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, 104(47), 18866–18870. http://doi.org/10.1073/pnas.0702737104

Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., … Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. http://doi.org/10.1007/s00442-005-0100-x

Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. (2004). Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1443), 409–420. http://doi.org/10.1098/rstb.2003.1425

Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. http://doi.org/10.1111/j.1461-0248.2009.01285.x

Corbera, E., & Schroeder, H. (2011). Governing and implementing REDD+. Environmental Science and Policy, 14(2), 89–99. http://doi.org/10.1016/j.envsci.2010.11.002

Elzinga, C., Shearer, R. C., & Elzinga, G. (2005). Observer variation in tree diameter measurements. Western Journal of Applied Forestry, 20(2), 134–137. Retrieved from https://www.fs.fed.us/rm/pubs_exp_forests/coram/rmrs_2005_elzinga_c001.pdf

Englhart, S., Jubanski, J., & Siegert, F. (2013). Quantifying dynamics in tropical peat swamp forest biomass with multi-temporal LiDAR datasets. Remote Sensing, 5(5), 2368–2388. http://doi.org/10.3390/rs5052368

Fayolle, A., Doucet, J. L., Gillet, J. F., Bourland, N., & Lejeune, P. (2013). Tree allometry in Central Africa: Testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecology and Management, 305, 29–37. http://doi.org/10.1016/j.foreco.2013.05.036

Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Mendoza, A. M., … Phillips, O. L. (2012). Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 9(8), 3381–3403. http://doi.org/10.5194/bg-9-3381-2012

Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environmental Research Letters, 2(4), 45023. http://doi.org/10.1088/1748-9326/2/4/045023

Hozumi, K., Yoda, K., Kokawa, S., & Kira, T. (1969). Production ecology of tropical rain forests in southwestern Cambodia: I. Plant biomass. In Nature and Life in Southeast Asia (6th ed., pp. 1–51). Kyoto, JP: Fauna and Flora Research Society, Japan Society for the Promotion of Science. Retrieved from http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/27798

Hunter, M. O., Keller, M., Victoria, D., & Morton, D. C. (2013). Tree height and tropical forest biomass estimation. Biogeosciences, 10(12), 8385–8399. http://doi.org/10.5194/bg-10-8385-2013

Kitahara, F., Mizoue, N., & Yoshida, S. (2008). Evaluation of data quality in Japanese National Forest Inventory. Environmental Monitoring and Assessment, 159(1–4), 331–340. http://doi.org/10.1007/s10661-008-0632-8

Kitahara, F., Mizoue, N., & Yoshida, S. (2010). Effects of training for inexperienced surveyors on data quality of tree diameter and height measurements. Silva Fennica, 44(4), 657–667. Retrieved from http://m.metla.eu/silvafennica/full/sf44/sf444657.pdf

Lambrick, F. H., Brown, N. D., Lawrence, A., & Bebber, D. P. (2014). Effectiveness of community forestry in prey long forest, Cambodia. Conservation Biology, 28(2), 372–381. http://doi.org/10.1111/cobi.12217

Larjavaara, M., & Muller-Landau, H. C. (2013). Measuring tree height: A quantitative comparison of two common field methods in a moist tropical forest. Methods in Ecology and Evolution, 4(9), 793–801. http://doi.org/10.1111/2041-210X.12071

Laurance, W. F. (2007). Forest destruction in tropical Asia. Current Science, 93(11), 1544–1550. Retrieved from http://www.currentscience.ac.in/Downloads/article_id_093_11_1544_1550_0.pdf

Lima, A. J. N., Suwa, R., de Mello Ribeiro, G. H. P., Kajimoto, T., dos Santos, J., da Silva, R. P., … Higuchi, N. (2012). Allometric models for estimating above- and below-ground biomass in Amazonian forests at São Gabriel da Cachoeira in the upper Rio Negro, Brazil. Forest Ecology and Management, 277, 163–172. http://doi.org/10.1016/j.foreco.2012.04.028

Manuri, S., Brack, C., Nugroho, N. P., Hergoualc’h, K., Novita, N., Dotzauer, H., … Widyasari, E. (2014). Tree biomass equations for tropical peat swamp forest ecosystems in Indonesia. Forest Ecology and Management, 334, 241–253. http://doi.org/10.1016/j.foreco.2014.08.031

Mason, N. W. H., Beets, P. N., Payton, I., Burrows, L., Holdaway, R. J., & Carswell, F. E. (2014). Individual-based allometric equations accurately measure carbon storage and sequestration in shrublands. Forests, 5(2), 309–324. http://doi.org/10.3390/f5020309

Vieilledent, G., Vaudry, R., Andriamanohisoa, S. F. D., Rakotonarivo, O. S., Randrianasolo, H. Z., Razafindrabe, H. N., … Rasamoelina, M. (2012). A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecological Applications, 22(2), 572–583. http://doi.org/10.1890/11-0039.1

Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., … Chave, J. (2009). Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository. Dryad Digital Repository (Vol. 235). http://doi.org/10.5061/dryad.234




DOI: http://doi.org/10.17503/agrivita.v40i1.1730

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.