Production of Insect Toxin Beauvericin from Entomopathogenic Fungi Cordyceps militaris by Heterologous Expression of Global Regulator

Rina Rachmawati, Hiroshi Kinoshita, Takuya Nihira

Abstract


Cordyceps militaris is one of entomopathogenic fungi species that is well known to be a traditional medicine in China for decades. Although the pharmaceutical and/or toxic properties of C. militaris has attracted attention as a promising resource for finding bioactive compounds, only a few substances including cordycepin have been reported so far. In the previous report heterologous expression of LaeA, a global regulator for secondary metabolites production in fungi, has been succeeded in C. militaris. The LaeA-engineered transformants are proved to produce new and/or elevated production of secondary metabolites, as detected by HPLC analysis. In order to further characterize the secondary metabolites that were being significantly produced by LaeA transformant, HPLC profiling and structure elucidation by proton NMR were conducted in two target compounds, designated as compound 1 and compound 2. Compound 1 possessed the highly similar characters to insect toxin beauvericin in UV spectrum, molecular weight, and retention time in HPLC analysis. Proton NMR analysis revealed that compound 1 had the same proton signals as beauvericin.

Keywords


Genetic engineering; LaeA; Transformation system

Full Text:

PDF

References


Chiang, Y.-M., Lee, K.-H., Sanchez, J. F., Keller, N. P., & Wang, C. C. C. (2009). Unlocking fungal cryptic natural products. Natural Product Communications, 4(11), 1505–1510. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3101174/

Isaka, M., Kittakoop, P., Kirtikara, K., Hywel-Jones, N. L., & Thebtaranonth, Y. (2005). Bioactive substances from insect pathogenic fungi. Accounts of Chemical Research, 38(10), 813–823. http://doi.org/10.1021/ar040247r

Isaka, M., Rugseree, N., Maithip, P., Kongsaeree, P., Prabpai, S., & Thebtaranonth, Y. (2005). Hirsutellones A-E, antimycobacterial alkaloids from the insect pathogenic fungus Hirsutella nivea BCC 2594. Tetrahedron, 61, 5588-5583. http://doi.org/10.1016/j.tet.2005.03.099

Isaka, M., Tanticharoen, M., Kongsaeree, P., & Thebtaranonth, Y. (2001). Structures of cordypyridones A−D, antimalarial N -hydroxy- and N -methoxy-2-pyridones from the insect pathogenic fungus Cordyceps nipponica. The Journal of Organic Chemistry, 66(14), 4803–4808. http://doi.org/10.1021/jo0100906

Keller, N., Bok, J., Chung, D., Perrin, R. M., & Shwab, E. K. (2006). LaeA, a global regulator of Aspergillus toxins. Medical Mycology, 44(SUPPL. 1), 83–85. http://doi.org/10.1080/13693780600835773

Lee, H., Kim, Y. J., Kim, H. W., Lee, D. H., Sung, M.-K., & Park, T. (2006). Induction of apoptosis by Cordyceps militaris through activation of caspase-3 in leukemia HL-60 cells. Biological & Pharmaceutical Bulletin, 29(4), 670–4. http://doi.org/10.1248/bpb.29.670

Lee, S.-Y., Kinoshita, H., Ihara, F., Igarashi, Y., & Nihira, T. (2008). Identification of novel derivative of helvolic acid from Metarhizium anisopliae grown in medium with insect component. Journal of Bioscience and Bioengineering, 105(5), 476–80. http://doi.org/10.1263/jbb.105.476

López-Berges, M. S., Hera, C., Sulyok, M., Schäfer, K., Capilla, J., Guarro, J., & di Pietro, A. (2013). The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Molecular Microbiology, 87(1), 49–65. http://doi.org/10.1111/mmi.12082

Luangsa-Ard, J. J., Berkaew, P., Ridkaew, R., Hywel-Jones, N. L., & Isaka, M. (2009). A beauvericin hot spot in the genus Isaria. Mycological Research, 113, 1389-1395. http://doi.org/10.1016/j.mycres.2009.08.017

Ng, T. B., & Wang, H. X. (2005). Pharmacological actions of Cordyceps, a prized folk medicine. Journal of Pharmacy and Pharmacology, 57(12), 1509–1519. http://doi.org/10.1211/jpp.57.12.0001

Ownley, B. H., Gwinn, K. D., & Vega, F. E. (2009). Endophytic fungal entomopathogens with activity against plant pathogens: Ecology and evolution. In H. E. Roy, F. E. Vega, D. Chandler, M. S. Goettel, J. Pell, & E. Wajnberg (Eds.), The Ecology of Fungal Entomopathogens (pp. 113–128). Dordrecht: Springer. http://doi.org/10.1007/978-90-481-3966-8_9

Patananan, A. N., Palmer, J. M., Garvey, G. S., Keller, N. P., & Clarke, S. G. (2013). A novel automethylation reaction in the Aspergillus nidulans LaeA protein generates S-methylmethionine. Journal of Biological Chemistry, 288(20), 14032–14045. http://doi.org/10.1074/jbc.M113.465765

Rachmawati, R., Kinoshita, H., & Nihira, T. (2013). Establishment of transformation system in Cordyceps militaris by using integration vector with benomyl resistance gene. Procedia Environmental Sciences, 17, 142–149. http://doi.org/10.1016/j.proenv.2013.02.022

Rukachaisirikul, V., Pramjit, S., Pakawatchai, C., Isaka, M., & Supothina, S. (2004). 10-Membered macrolides from the insect pathogenic fungus Cordyceps militaris BCC 2816. Journal of Natural Products, 67(11), 1953–1955. http://doi.org/10.1021/np0401415

Zimmermann, G. (2007). Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, 17(6), 553–596. http://doi.org/10.1080/09583150701309006




DOI: http://doi.org/10.17503/agrivita.v40i1.1727

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.