Does Landscape Complexity and Semi-Natural Habitat Structure Affect Diversity of Flower-Visiting Insects in Cucumber Fields?

Akhmad Rizali, Damayanti Buchori, Susilawati Susilawati, Pudjianto Pudjianto, Yann Clough

Abstract


Presence of insects in agricultural habitat is affected by the surrounding circumstances such as the complexity and structure of landscape. Landscape structure is often formed as a consequence of the fragmentation of semi-natural habitat, which can negatively affect species richness and abundance of insects. This study was aimed to study the effect of complexity and structure of landscape on the diversity, abundance and traits of flower-visiting insects in cucumber fields. This study was conducted in cucumber fields surrounded by other agricultural crops, shrubs, semi-natural habitat and housing area, in Bogor, Cianjur and Sukabumi regencies, West Java, Indonesia. In a total of 16 agricultural areas, complexity and parameter of landscape especially class area (CA), number of patches (NumP), mean patch size (MPS), total edge (TE), and mean shape index (MSI) of seminatural habitats were measured. Sampling of flower-visiting insects was conducted using scan sampling methods. The result showed that landscape complexity affected species richness (but not abundance and trait) of flower-visiting insects both for mobile and less-mobile insects. Flower-visiting insects also responded differently to landscape structure. Species richness, abundance and variation of body size of mobile insects were affected by structure of semi-natural habitat.


Keywords


Flower-visiting insects; Landscape; Morphological trait; Species richness

Full Text:

PDF

References


Alba-Tercedor, J., & El-Alami, M. (1999). Description of the nymphs and eggs of Acentrella almohades sp. n. from Morocco and Southern Spain (Ephemeroptera: Baetidae). Aquatic Insects: International Journal of Freshwater Entomology, 21(4), 241-247. crossref

Allen-Wardell, G., Bernhardt, P., Bitner, R., Burquez, A., Buchmann, S., Cane, J., … Nabhan, G. P. (1998). The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conservation Biology, 12(1), 8–17. crossref

Bianchi, F. J. J. ., Booij, C. J. ., & Tscharntke, T. (2006). Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society B: Biological Sciences, 273(1595), 1715–1727. crossref

Blaauw, B. R., & Isaacs, R. (2012). Larger wildflower plantings increase natural enemy density, diversity, and biological control of sentinel prey, without increasing herbivore density. Ecological Entomology, 37(5), 386–394. crossref

Bolton, B. (1994). Identification guide to the ant genera of the World. Cambridge, MA: Harvard University Press.

Bommarco, R., Marini, L., & Vaissière, B. E. (2012). Insect pollination enhances seed yield, quality, and market value in oilseed rape. Oecologia, 169(4), 1025–1032. crossref

CSIRO. (1991). Insects of Australia: A textbook for students and research workers (2nd ed.). Melbourne, AU: Melbourne University Publishing.

Ernoult, A., Vialatte, A., Butet, A., Michel, N., Rantier, Y., Jambon, O., & Burel, F. (2013). Grassy strips in their landscape context, their role as new habitat for biodiversity. Agriculture, Ecosystems and Environment, 166, 15–27. crossref

Faheem, M., Aslam, M., & Razaq, M. (2004). Pollination ecology with special reference to insects-a review. Journal of Research (Science), 15(4), 395-409. Retrieved from pdf

Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., … Martin, J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14(2), 101–112. crossref

Ganehiarachchi, G. A. S. M. (1997). Aspects of the biology of Diaphania indica (Lepidoptera: Pyralidae). Journal of the National Science Council of Sri Lanka, 25(4), 203–209. Retrieved from website

Garibaldi, L. A., Steffan-Dewenter, I., Winfree, R., Aizen, M. A., Bommarco, R., Cunningham, S. A., … Klein, A. M. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 339(6127), 1608–1611. crossref

Gathmann, A., & Tscharntke, T. (2002). Foraging ranges of solitary bees. Journal of Animal Ecology, 71(5), 757–764. crossref

Goulet, H., & Huber, J. T. (Eds.). (1993). Hymenoptera of the world: An identification guide to families. Ottawa, CA: Canada Communication Group. Retrieved from pdf

Holzschuh, A., Steffan-Dewenter, I., & Tscharntke, T. (2009). Grass strip corridors in agricultural landscapes enhance nest-site colonization by solitary wasps. Ecological Applications, 19(1), 123–132. crossref

Holzschuh, A., Steffan-Dewenter, I., & Tscharntke, T. (2010). How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? Journal of Animal Ecology, 79(2), 491–500. crossref

Jauker, F., Diekötter, T., Schwarzbach, F., & Wolters, V. (2009). Pollinator dispersal in an agricultural matrix: Opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landscape Ecology, 24(4), 547–555. crossref

Johnson Jr., H. (1972). Fruit set problems in squash, melons, and cucumbers in home gardens (Leaflet 21242). Retrieved from pdf

Krauss, J., Steffan-Dewenter, I., & Tscharntke, T. (2003). Local species immigration, extinction, and turnover of butterflies in relation to habitat area and habitat isolation. Oecologia, 137(4), 591–602. crossref

Kremen, C., Williams, N. M., Aizen, M. A., Gemmill-Herren, B., LeBuhn, G., Minckley, R., … Ricketts, T. H. (2007). Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecology Letters, 10(4), 299–314. crossref

McAlpine, J. F. (1987). Manual of nearctic: Diptera (1st ed., Vol. 2). Ottawa, CA: Canada Communication Group. Retrieved from pdf

McGarigal, K., & Marks, B. J. (1995). FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. crossref

McGarigal, K., Cushman, S. A., & Ene, E. (2012). FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous maps. Amherst, MA: University of Massachusetts. Retrieved from website

McGlynn, T. P. (1999). The worldwide transfer of ants: Geographical distribution and ecological invasions. Journal of Biogeography, 26(3), 535–548. crossref

McGregor, S. E. (1976). Insect pollination of cultivated crop plants. Washington, DC: Agricultural Research Service, U.S. Department of Agriculture. Retrieved from pdf

Menalled, F. D., Marino, P. C., Gage, S. H., & Landis, D. A. (1999). Does agricultural landscape structure affect parasitism and parasitoid diversity? Ecological Applications, 9(2), 634–641. crossref

Muniaapan, R., Shepard, B. M., Carner, G. R., & Ooi, P. A.-C. (2012). Arthropod pests of horticultural crops in tropical Asia. Cabridge, MA: CABI.

Ouin, A., Aviron, S., Dover, J., & Burel, F. (2004). Complementation/supplementation of resources for butterflies in agricultural landscapes. Agriculture, Ecosystems & Environment, 103(3), 473-479. crossref

Persson, A. S., Rundlöf, M., Clough, Y., & Smith, H. G. (2015). Bumble bees show trait-dependent vulnerability to landscape simplification. Biodiversity and Conservation, 24(14), 3469–3489. crossref

Plećaš, M., Gagić, V., Janković, M., Petrović-Obradović, O., Kavallieratos, N. G., Tomanović, Ž., … Ćetković, A. (2014). Landscape composition and configuration influence cereal aphid-parasitoid-hyperparasitoid interactions and biological control differentially across years. Agriculture, Ecosystems and Environment, 183, 1–10. crossref

QGIS. (2016). A free and open source geographic information system [Software]. Available from website

R Core Team. (2016). R: A language and environment for statistical computing [computer software]. Vienna, AT: R Foundation for Statistical Computing.

Ricotta, C., & Moretti, M. (2011). CWM and Rao’s quadratic diversity: A unified framework for functional ecology. Oecologia, 167(1), 181–188. crossref

Rohlf, F. J. (2004). Digitize landmarks & outlines from image files, scanner, or video [Software]. Available from website

Šálek, M., Kučera, T., Zimmermann, K., Bartůšková, I., Plátek, M., Grill, S., & Konvička, M. (2015). Edges within farmland: Management implications of taxon specific species richness correlates. Basic and Applied Ecology, 16(8), 714–725. crossref

Shwetha, B. V., Rubina, K., Kuberappa, G. C., & Reddy, M. S. (2012). Insect pollinators diversity, abundance with special reference to role of honeybees in increasing production of cucumber, Cucumis sativus L.. Korea Journal of Apiculture, 27(1), 9-14. Retrieved from website

Sowig, P. (1989). Effects of flowering plant’s patch size on species composition of pollinator communities, foraging strategies, and resource partitioning in bumblebees (Hymenoptera: Apidae). Oecologia, 78(4), 550–558. crossref

Steffan-Dewenter, I. (2002). Landscape context affects trap-nesting bees, wasps, and their natural enemies. Ecological Entomology, 27(5), 631–637. crossref

Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C., & Tscharntke, T. (2002). Scale-dependent effects of landscape context on three pollinator guilds. Ecology, 83(5), 1421–1432. crossref

Thies, C., Roschewitz, I., & Tscharntke, T. (2005). The landscape context of cereal aphid-parasitoid interactions. Proceedings of the Royal Society B: Biological Sciences, 272(1559), 203–210. crossref

Vaissière, B. E., Freitas, B. M., & Gemmill-Herren, B. (2011). Protocol to detect and assess pollination deficits in crops: A handbook for its use. Rome, IT: FAO. Retrieved from pdf

Westphal, C., Bommarco, R., Carré, G., Lamborn, E., Morison, N., Petanidou, T., … Steffan-Dewenter, I. (2008). Measuring bee diversity in different European habitats and biogeographical regions. Ecological Monographs, 78(4), 653–671. crossref

Widiatmaka, Ambarwulan, W., & Sudarsono. (2016). Spatial multi-criteria decision making for delineating agricultural land in Jakarta metropolitan area’s hinterland: Case study of Bogor regency, West Java. AGRIVITA Journal of Agricultural Science, 38(2), 105–115. crossref




DOI: http://doi.org/10.17503/agrivita.v40i0.1722

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.