Physico-Chemical, Viability Evaluations and Efficacy Assessment of Bacillus subtilis Against Soft Rot Disease in Phalaenopsis

Wakiah Nuryani, Hanudin Hanudin, Evi Silvia Yusuf, Kurniawan Budiarto

Abstract


The study of biological agents in controlling plant disease has discovered many potential microbes with various mode of actions. In the end, these potential microorganism should qualifiedly fulfill several requirements before they are formally stated for commercialization and wider implementation. Evaluations on their physico-chemical characteristics and viabililty after certain storage period were needed to ensure the effectiveness of the product during transportation and commercialization process. The research was aimed to evaluate B. subtilis strains B7 and B30 for their physio-chemical characteristic and viability after six months storage and investigate the efficacy of the strains against soft root disease of Phalaenopsis. The results showed that both antagonists had stable perfomances in physico-chemical, viability and efficacy evaluations after six months storage. The existence of active bacteria was demonstrated from the decrease in pH, murky suspensions and foul smelling as indications of fermentative reactions under optimal and minimal nutrients. Both antagonists showed stable viability after storage and effectively inhibited soft rot disease when applied on the infected plants with slightly lesser supression from streptomycin sulphate.

Keywords


Bacillus subtilis; Biological control; Efficacy evaluation; Phalaenopsis; Soft rot

Full Text:

PDF

References


Abdeljalil, N. O. Ben, Renault, D., Gerbore, J., Vallance, J., Rey, P., & Daami-Remadi, M. (2016). Evaluation of the effectiveness of tomato-associated rhizobacteria applied singly or as three-strain consortium for biosuppression of sclerotinia stem rot in tomato. Journal of Microbial & Biochemical Technology, 8(4), 312–320. crossref

Allocati, N., Masulli, M., Di Ilio, C., & De Laurenzi, V. (2015). Die for the community: An overview of programmed cell death in bacteria. Cell Death and Disease, 6, e1609. crossref

Al-Zaidi, A. A., Elhag, E. A., Al-Otaibi, S. H., & Baig, M. B. (2011). Negative effects of pesticides on the environment and the farmers awareness in Saudi Arabia: A case study. Journal of Animal and Plant Sciences, 21(3), 605–611.

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. crossref

Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1573), 1987–1998. crossref

Chien, A.-C., Hill, N. S., & Levin, P. A. (2012). Cell size control in bacteria. Current Biology, 22(9), R340–R349. crossref

Damalas, C. A., & Koutroubas, S. D. (2018). Current status and recent developments in biopesticide use. Agriculture, 8(1), 13. crossref

Djunaedy, A. (2009). Biopestisida sebagai pengendali organisme pengganggu tanaman (OPT) yang ramah lingkungan [Biopesticide as alternative environmentally-friendly compounds in managing pest]. Embryo, 6(1), 88–95. Retrieved from PDF

Firgiyanto, R., Aziz, S. A., Sukma, D., & Giyanto. (2016). Uji ketahanan anggrek hibrida Phalaenopsis terhadap penyakit busuk lunak yang disebabkan oleh Dickeya dadantii [Resistancy test to soft rot disease caused by Dickeya dadantii on Phalaenopsis hybrids]. Jurnal Agronomi Indonesia, 44(2), 204–210. crossref

Fujita, Y. (2009). Carbon catabolite control of the metabolic network in Bacillus subtilis. Bioscience, Biotechnology, and Biochemistry, 73(2), 245–259. crossref

Fujita, Y., Matsuoka, H., & Hirooka, K. (2007). Regulation of fatty acid metabolism in bacteria. Molecular Microbiology, 66(4), 829–839. crossref

Golkhandan, E., Kamaruzaman, S., Sariah, M., Zainal Abidin, M. A., & Nasehi, A. (2013). Characterisation of Pectobacterium carotovorum causing soft rot on Kalanchoe gastonis-bonnierii in Malaysia. Archives of Phytopathology and Plant Protection, 46(15), 1809–1815. crossref

Hanudin, & Rahardjo, I. B. (2011). Karakteristik Pseudomonas viridiflava: Penyebab penyakit busuk lunak dan evaluasi virulensinya pada klon anggrek Phalaenopsis [Characteristic of Pseudomonas viridiflava: Causal agents of soft rot bacterial disease and evaluation of it]. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 11(2), 185–193. Retrieved from website

Hanudin, Nawangsih, A. A., Marwoto, B., & Tjahjono, B. (2013). Komposisi formula biobakterisida berbahan aktif rizobakteri untuk pengendalian penyakit busuk lunak pada anggrek Phalaenopsis [Formula composition of biobactericide with active ingredient rhizobacteria for controling bacterial soft rot on Phalaenopsis]. Jurnal Hortikultura, 23(3), 244–254. crossref

Hasyim, A., Setiawati, W., & Lukman, L. (2015). Inovasi teknologi pengendalian OPT ramah lingkungan pada cabai: Upaya alternatif menuju ekosistem harmonis [Technological innovation of sustainable pest and disease management on chili peppers: An alternative effort to establish harmonious ecosystems]. Pengembangan Inovasi Pertanian, 8(1), 1–10. Retrieved from PDF

Johnsen, P. J., Dubnau, D., & Levin, B. R. (2009). Episodic selection and the maintenance of competence and natural transformation in Bacillus subtilis. Genetics, 181(4), 1521–1533. crossref

Joko, T., Kiswanti, D., Hanudin, & Subandiyah, S. (2011). Occurence of bacterial soft-rot of Phalaenopsis orchids in Yogyakarta and West Java, Indonesia. In Natural Resources Climate Change and Food Security in Developing Countries Surabaya, Indonesia, June 27-28, 2011 (pp. 255–264). Retrieved from website

Joko, T., Kusumandari, N., & Hartono, S. (2011). Optimasi metode PCR untuk deteksi Pectobacterium carotovorum, penyebab penyakit busuk lunak anggrek [Optimization of PCR method for the detection of Pectobacterium carotovorum, a causal agent of soft-rot disease on orchid]. Jurnal Perlindungan Tanaman Indonesia, 17(2), 54–59. Retrieved from website

Joko, T., Subandi, A., Kusumandari, N., Wibowo, A., & Priyatmojo, A. (2014). Activities of plant cell wall-degrading enzymes by bacterial soft rot of orchid. Archives of Phytopathology and Plant Protection, 47(10), 1239–1250. crossref

Keith, L. M., Sewake, K. T., & Zee, F. T. (2005). Isolation and characterization of Burkholderia gladioli from orchids in Hawaii. Plant Disease, 89, 1273–1278. crossref

Laba, I. W. (2010). Analisis empiris penggunaan insektisida menuju pertanian berkelanjutan [Empirical analysis of using insecticides to sustainable agriculture]. Pengembangan Inovasi Pertanian, 3(2), 120–137. Retrieved from PDF

Lee, D.-H., Kim, J.-H., Lee, J.-H., Hur, J.-S., & Koh, Y.-J. (1999). Bacteril soft rot of Dendrobium phalaenopsis and Phalaenopsis species by Erwinia chrysanthemi. The Plant Pathology Journal, 15(5), 302–307.

Ma, B., Hibbing, M. E., Kim, H.-S., Reedy, R. M., Yedidia, I., Breuer, J., … Charkowski, A. O. (2007). Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology, 97(9), 1150-1163. crossref

Meera, T. M., Louis, V., & Beena, S. (2016). Diseases of Phalaenopsis: Symptoms, etiology and management. International Journal of Agriculture Innovations and Research, 5(2), 296–300. Retrieved from PDF

Moh, A. A., Massart, S., Jijakli, M. H., & Lepoivre, P. (2012). Models to predict the combined effects of temperature and relative humidity on Pectobacterium atrosepticum and Pectibacterium carotovorum subsp. carotovorum population density and soft rot disease development at the surface of wounded potato. Journal of Plant Pathology, 94(1), 181–191. crossref

Moon, H., Park, H. J., Jeong, A. R., Han, S. W., & Park, C. J. (2017). Isolation and identification of Burkholderia gladioli on Cymbidium orchids in Korea. Biotechnology and Biotechnological Equipment, 31(2), 280–288. crossref

Mota, M. S., Gomes, C. B., Souza Júnior, I. T., & Moura, A. B. (2017). Bacterial selection for biological control of plant disease: criterion determination and validation. Brazilian Journal of Microbiology, 48(1), 62-70. crossref

Nuryani, W., Yusuf, E. S., Hanudin, Djatnika, I., & Marwoto, B. (2012). Kemangkusan biobakterisida terhadap penyakit busuk lunak (Pseudomonas viridiflava) pada Phalaenopsis [Effectiveness of biobactericide on soft rot bacterial disease (Pseudomonas viridiflava) of Phalaenopsis]. Jurnal Hortikultura, 22(4), 329–399. crossref

Samson, R., Legendre, J. B., Christen, R., Fischer-Le Saux, M., Achouak, W., & Gardan, L. (2005). Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. International Journal of Systematic and Evolutionary Microbiology, 55, 1415–1427. crossref

Sansinenea, E., & Ortiz, A. (2011). Secondary metabolites of soil Bacillus spp. Biotechnology Letters, 33(8), 1523–1538. crossref

Sawant, I. S., Wadkar, P. N., Rajguru, Y. R., Mhaske, N. H., Salunkhe, V. P., Sawant, S. D., & Upadhyay, A. (2016). Biocontrol potential of two novel grapevine associated Bacillus strains for management of anthracnose disease caused by Colletotrichum gloeosporioides. Biocontrol Science and Technology, 26(7), 964–979. crossref

Sieuwerts, S., De Bok, F. A. M., Mols, E., De Vos, W. M., & Van Hylckama Vlieg, J. E. T. (2008). A simple and fast method for determining colony forming units. Letters in Applied Microbiology, 47(4), 275-278. crossref

Sudarsono, S., Elina, J., Giyanto, & Sukma, D. (2018). Pathogen causing Phalaenopsis soft rot disease - 16s rDNA and virulence characterisation. Plant Protection Science, 54(1), 1–8. crossref

van Dijl, J. M., & Hecker, M. (2013). Bacillus subtilis: From soil bacterium to super-secreting cell factory. Microbial Cell Factories, 12(3), 1–6. crossref

Yuliar, & Suciatmih. (2018). Efficacy of bacterial biocontrol agents and environmental-friendly fine chemicals for suppression of ganoderma boninense growth. In IOP Conference Series: Earth and Environmental Science (p. 1-9). crossref




DOI: http://doi.org/10.17503/agrivita.v40i0.1720

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.