Micropropagation of Dendrobium phalaenopsis Orchid Through Overexpression of Embryo Gene AtRKD4

Nintya Setiari, Aziz Purwantoro, Sukarti Moeljopawiro, Endang Semiarti

Abstract


To increase the efficiency of crop production from Dendrobium phalaenopsis orchids, mass propagation has been performed by inducing somatic embryogenesis through Agrobacterium-mediated transformation of the Arabidopsis embryo gene AtRKD4 into orchid protocorm (developing orchid embryo). The three-week-old protocorms of D. phalaenopsis were genetically transformed with T-DNA carrying 35S :: GAL4 :: AtRKD4 :: GR through A. tumefaciens strain EHA 105. The cultures were maintained in VW medium with 10 mg L-1 Hygromycin. Due to the existence of glucocorticoid response element (GR) in the T-DNA construct, the transformed protocorms were transferred into VW medium with the addition of 15 μM Dexamethasone in 6 weeks after transformation to activate the transgene. A total of 12% protocorms has been confirmed for Hyg + by using PCR. The expression of embryo gene AtRKD4 was confirmed by cDNA analysis using AtRKD4 specific primers and Actin primers as a positive control experiment. The expression level of AtRKD4 in 2.5-month-old D. phalaenopsis transformant shoots was 7 times higher than non-transformant plants, and increased to 86 times higher in 8-months, that much higher than that of non-transformant. These results provide an improved method for genetic transformation of D. Phalaenopsis and will (eventually) increase production efficiency in the future.

Keywords


AtRKD4; Dendrobium phalaenopsis; Glucocorticoid; Micropropagation; Somatic Embryo

Full Text:

PDF

References


Bunnag, S., & Pilahome, W. (2012). Agrobacterium-mediated transformation of Dendrobium chrysotoxum Lindl. African Journal of Biotechnology, 11(10), 2472–2476. crossref

Chardin, C., Girin, T., Roudier, F., Meyer, C., & Krapp, A. (2014). The plant RWP-RK transcription factors: Key regulators of nitrogen responses and of gametophyte development. Journal of Experimental Botany, 65(19), 5577–5587. crossref

Dwiyani, R., Yuswanti, H., Darmawati, I. A. P., Suada, K., & Mayadewi, N. N. A. (2015). In vitro germination and its subsequent growth of an orchid of Vanda tricolor Lindl. var. suavis from Bali on complex additives enriched medium. AGRIVITA Journal of Agricultural Science, 37(2), 144–150. crossref

Elhiti, M., Stasolla, C., & Wang, A. (2013). Molecular regulation of plant somatic embryogenesis. In Vitro Cellular & Developmental Biology - Plant, 49(6), 631–642. crossref

Gardiner, L. M., Kocyan, A., Motes, M., Roberts, D. L., & Emerson, B. C. (2013). Molecular phylogenetics of Vanda and related genera (Orchidaceae). Botanical Journal of the Linnean Society, 173(4), 549–572. crossref

Hoang, N. H., Kane, M. E., Radcliffe, E. N., Zettler, L. W., & Richardson, L. W. (2017). Comparative seed germination and seedling development of the ghost orchid, Dendrophylax lindenii (Orchidaceae), and molecular identification of its mycorrhizal fungus from South Florida. Annals of Botany, 119(3), 379–393. crossref

Ivakdalam, L. M., & Pugesehan, D. J. (2016). Keragaman jenis tanaman anggrek (Orchidaceae) di Cagar Alam Angwarmase, Kabupaten Maluku Tenggara Barat [Diversity of orchid species (Orchidaceae) in Angwarmase Nature Reserve, Regency of West Southeast Maluku]. Jurnal Agroforestri, 11(3), 161–168. Retrieved from PDF

Jainol, J. E., & Gansau, J. A. (2017). Embryogenic callus induction from leaf tip explants and protocormlike body formation and shoot proliferation of Dimorphorchis lowii: Borneon endemic orchid. AGRIVITA Journal of Agricultural Science, 39(81), 1–10. crossref

Kaur, R., & Singh, K. (2010). Orchid transformation: Protocol, problems and practical applications. Asian Journal of Experimental Biological Sciences, 1(4), 711–718. Retrieved from website

Lee, Y. I., Hsu, S. Te, & Yeung, E. C. (2013). Orchid protocorm-like bodies are somatic embryos. American Journal of Botany, 100(11), 2121–2131. crossref

Mondal, T., Aditya, S., & Banerjee, N. (2016). Role of plant growth regulators on asymbiotic seed germination and seedling development of Vanda coerulea Griff. ex Lindl. an endangered orchid. Indian Journal of Fundamental and Applied Life Sciences, 6(3), 36–41. Retrieved from PDF

Mursyanti, E., Purwantoro-Aziz, Moeljopawiro, S., & Semiarti, E. (2015). Induction of somatic embryogenesis through overexpression of ATRKD4 genes in Phalaenopsis “Sogo Vivien.” Indonesia Journal of Biotechnology, 20(1), 42–53. crossref

Semiarti, E., Indrianto, A., Purwantoro, A., Martiwi, I. N. A., Feroniasanti, Y. M. L., Nadifah, F., … Machida, C. (2010). High-frequency genetic transformation of Phalaenopsis amabilis orchid using tomato extract-enriched medium for the pre-culture of protocorms. Journal of Horticultural Science and Biotechnology, 85(3), 205–210. crossref

Shekarriz, P., Kafi, M., Deilamy, S. D., & Mirmasoumi, M. (2014). Coconut water and peptone improve seed germination and protocorm like body formation of hybrid Phalaenopsis. Agriculture Science Developments, 3(10), 317–322. Retrieved from PDF

Shires, M. E., Florez, S. L., Lai, T. S., & Curtis, W. R. (2017). Inducible somatic embryogenesis in Theobroma cacao achieved using the DEX-activatable transcription factor-glucocorticoid receptor fusion. Biotechnology Letters, 39(11), 1747–1755. crossref

Waki, T., Hiki, T., Watanabe, R., Hashimoto, T., & Nakajima, K. (2011). The arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis. Current Biology, 21(15), 1277–1281. crossref

Widiastoety, D., Solvia, N., & Soedarjo, M. (2010). Potensi anggrek Dendrobium dalam meningkatkan variasi dan kualitas anggrek bunga potong [Potential of Dendrobium in increasing variety and quality of orchids]. Jurnal Litbang Pertanian, 29(3), 101–106. Retrieved from PDF

Wright, G. D. (2010). Q&A: Antibiotic resistance: Where does it come from and what can we do about it? BMC Biology, 8, 123. crossref

Yeung, E. C. (2017). A perspective on orchid seed and protocorm development. Botanical Studies, 58(1), 33. crossref




DOI: http://doi.org/10.17503/agrivita.v40i2.1690

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.