Clonal Fidelity of Micro-propagated Phalaenopsis Plantlets Based on Assessment Using Eighteen Ph-Pto SNAP Marker Loci

Erick Raynalta, Juanita Elina, Sudarsono Sudarsono, Dewi Sukma


Phalaenopsis amabilis is an Indonesia native orchid species having large, white flowers with yellow labellum coloration. This studies aimed to develop Phal. amabilis micropropagation methods and evaluate the regenerated plantlet fidelity. Media supplemented with Thidiazuron (TDZ) and Polyvinylpyrrolidone (PVP) and medium pH adjustment effects to induce protocorm-like bodies (PLBs) from leaf explants and proliferate secondary PLBs were investigated. Clonal fidelity among regenerated plantlets was evaluated using eighteen SNAP marker loci. The results showed that the ½ MS medium supplemented with 3 mg L-1 TDZ and 0.5 g L-1 PVP was the best for PLB induction while the ½ MS medium supplemented with 0.5 mg L-1 TDZ was the best for PLB proliferation. For PLB induction, the media pH was adjusted into pH=7 for efficient PLB regeneration. Based on the assessment using 18 SNAP marker loci, four variant alleles in three loci (11.8%) out of a total 34 plantlets were detected. The mutation frequency at the evaluated SNAP marker loci was 2.5 x 103 (0.25%). Changes in SNP alleles may not always result in phenotype changes and allele variant occurrences may not affect phenotype fidelity of micro-propagated Phal. amabilis plantlets. Therefore, further studies about the phenotype fidelity among plantlets are necessary.


Micro-propagation; Phenotype fidelity; PLBs; Protocorm-like bodies; Thidiazuron

Full Text:



Ahmad, I., Hussain, T., Ashraf, I., Nafees, M., Maryam, Rafay, M., & Iqbal, M. (2013). Lethal effect of secondary metabolites on plant tissue culture. American-Eurasian Journal Of Agricultural & Environmental Sciences, 13(4), 539–547.

Ajijah, N., Hartati, R. S., Rubiyo, Sukma, D., & Sudarsono. (2016). Effective cacao somatic embryo regeneration on kinetin supplemented DKW medium and somaclonal variation assessment using SSRs markers. AGRIVITA Journal of Agricultural Science, 38(1), 80–92.

Antensari, F., Mariani, T. S., & Wicaksono, A. (2014). Micropropagation of Phalaenopsis ‘R11xR10’ through somatic embryogenesis method. Asian Journal of Applied Sciences, 2(2), 145–150. Retrieved from

Bairu, M. W., Aremu, A. O., & Van Staden, J. (2011). Somaclonal variation in plants: Causes and detection methods. Plant Growth Regulation, 63(2), 147–173.

Balilashaki, K., Naderi, R., Kalantari, S., & Soorni, A. (2014). Micropropagation of Phalaenopsis amabilis cv. Cool “Breeze” with using of flower stalk nodes and leaves of sterile obtained from node cultures. International Journal of Farming and Allied Sciences, 3(7), 823–829.

Chen, C.-C., Bates, R., & Carlson, J. (2015). Effect of environmental and cultural conditions on medium pH and explant growth performance of Douglas-fir (Pseudotsuga menziesii) shoot cultures. F1000Research, 3, 298.

Chen, F.-C., Yu, J.-Y., Chen, P.-Y., & Huang, Y.-W. (2008). Somaclonal variation in orchids and the application of biotechnology. Acta Horticulturae, (766), 315–322.

Chen, G., Chen, D., Wang, T., Xu, C., & Li, L. (2012). Analysis of the proteins related to browning in leaf culture of Phalaenopsis. Scientia Horticulturae, 141, 17–22.

Chen, L.-R., Chen, J.-T., & Chang, W.-C. (2002). Efficient production of protocorm-like bodies and plant regeneration from flower stalk explants of the sympodial orchid Epidendrum radicans. In Vitro Cellular & Developmental Biology - Plant, 38(5), 441–445.

Chugh, S., Guha, S., & Rao, I. U. (2009). Micropropagation of orchids: A review on the potential of different explants. Scientia Horticulturae, 122(4), 507–520.

Crain, B. J., & Tremblay, R. L. (2014). Do richness and rarity hotspots really matter for orchid conservation in light of anticipated habitat loss? Diversity and Distributions, 20(6), 652–662.

Crain, B. J., & Tremblay, R. L. (2017). Hot and bothered: Changes in microclimate alter chlorophyll fluorescence measures and increase stress levels in tropical epiphytic orchids. International Journal of Plant Sciences, 178(7), 503–511.

Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15. Retrieved from

Elina, J., Sukma, D., Giyanto, & Sudarsono. (2017). Isolasi dan karakterisasi gen Pto asal 20 aksesi anggrek Phalaenopsis [Isolation and characterization of Pto gene from 20 Phalaenopsis orchid genotypes]. Jurnal Agronomi Indonesia, 45(2), 204–211. Retrieved from

Fatimah, & Sukma, D. (2011). Development of sequence-based microsatellite marker for Phalaenopsis orchid. HAYATI Journal of Biosciences, 18(2), 71–76.

Fay, M. F. (2018). Orchid conservation: how can we meet the challenges in the twenty-first century ? Botanical Studies, 59, 16.

Fehér, A. (2015). Somatic embryogenesis-stress-induced remodeling of plant cell fate. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1849(4), 385–402.

Feng, J. H., & Chen, J. T. (2014). A novel in vitro protocol for inducing direct somatic embryogenesis in Phalaenopsis aphrodite without taking explants. The Scientific World Journal, 2014(263642), 1–7.

George, E. F., Hall, M. A., & De Klerk, G.-J. (Eds.). (2008). Plant propagation by tissue culture. Vol 1. The Background (3rd ed.). Netherland: Springer.

Gow, W. P., Chen, J. T., & Chang, W. C. (2008). Influence of growth regulators on direct embryo formation from leaf explants of Phalaenopsis orchids. Acta Physiologiae Plantarum, 30, 507.

Gow, W. P., Chen, J. T., & Chang, W. C. (2010). Enhancement of direct somatic embryogenesis and plantlet growth from leaf explants of Phalaenopsis by adjusting culture period and explant length. Acta Physiologiae Plantarum, 32(4), 621–627.

Gulles, A. A., Bartolome, V. I., Morantte, R. I. Z. A., Nora, L. A., Relente, C. E. N., Talay, D. T., … Ye, G. (2014). Randomization and analysis of data using STAR [Statistical Tool for Agricultural Research]. Philippine Journal of Crop Science, 39(supplement1), 137. Retrieved from

Handoyo, F. (2010). Orchids of Indonesia (Vol. 1). Indonesia: Indonesian Orchid Society. Retrieved from

Hill, K., & Schaller, G. E. (2013). Enhancing plant regeneration in tissue culture: A molecular approach through manipulation of cytokinin sensitivity. Plant Signaling and Behavior, 8(10), e25709.

Hofmann, N., Nelson, R. L., & Korban, S. S. (2004). Influence of media components and pH on somatic embryo induction in three genotypes of soybean. Plant Cell, Tissue and Organ Culture, 77(2), 157–163.

Huang, Y. W., Tsai, Y. J., Cheng, T. C., Chen, J. J., & Chen, F. C. (2014). Physical wounding and ethylene stimulated embryogenic stem cell proliferation and plantlet regeneration in protocorm-like bodies of Phalaenopsis orchids. Genetics and Molecular Research, 13(4), 9543–9557.

Ikedo, T. (n.d.). Phalaenopsis species: Ecology, morphology and cultivation. Retrieved from

Khoddamzadeh, A. A., Sinniah, U. R., Kadir, M. A., Kadzimin, S. B., Mahmood, M., & Sreeramanan, S. (2010). Detection of somaclonal variation by random amplified polymorphic DNA analysis during micropropagation of Phalaenopsis bellina (Rchb.f.) Christenson. African Journal of Biotechnology, 9(40), 6632–6639. Retrieved from

Khoddamzadeh, A. A., Sinniah, U. R., Kadir, M. A., Kadzimin, S. B., Mahmood, M., & Sreeramanan, S. (2011). In vitro induction and proliferation of protocorm-like bodies (PLBs) from leaf segments of Phalaenopsis bellina (Rchb.f.) Christenson. Plant Growth Regulation, 65, 381.

Knudson, L. (1946). A new nutrient solution for germination of orchid seeds. American Orchid Society Bulletin, 15, 214-217.

Larekeng, S. H., Maskromo, I., Purwito, A., Mattjik, N. A., & Sudarsono, S. (2015). Penyebaran polen berdasarkan analisis SSR membuktikan penyerbukan kelapa dalam Kalianda normal ke kopyor [Pollen dispersal based on SSR analysis proves Kalianda to kopyor coconut pollinations]. Buletin Palma, 16(1), 77–92.

Lee, Y. I., Hsu, S. T., & Yeung, E. C. (2013). Orchid protocorm-like bodies are somatic embryos. American Journal of Botany, 100(11), 2121-2131.

Mahendran, G., & Bai, V. N. (2016). An efficient in vitro propagation, antioxidant and antimicrobial activities of Aphyllorchis montana Rchb.f. Plant Biosystems, 150(5), 1087–1095.

Maskromo, I., Larekeng, S. H., Novarianto, H., & Sudarsono, S. (2016). Xenia negatively affecting kopyor nut yield in Kalianda Tall kopyor and Pati Dwarf kopyor coconuts. Emirates Journal of Food and Agriculture, 28(9), 644–652.

Merritt, D. J., Hay, F. R., Swarts, N. D., Sommerville, K. D., & Dixon, K. W. (2014). Ex situ conservation and cryopreservation of orchid germplasm. International Journal of Plant Sciences, 175(1), 46–58.

Miyao, A., Nakagome, M., Ohnuma, T., Yamagata, H., Kanamori, H., Katayose, Y., … Hirochika, H. (2012). Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant and Cell Physiology, 53(1), 256–264.

Mose, W., Indrianto, A., Purwantoro, A., & Semiarti, E. (2017). The influence of thidiazuron on direct somatic embryo formation from various types of explant in Phalaenopsis amabilis (L.) blume orchid. HAYATI Journal of Biosciences, 24(4), 201–205.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.

Niknejad, A., Kadir, M. A., & Kadzimin, S. B. (2011). In vitro plant regeneration from protocorms-like bodies (PLBs) and callus of Phalaenopsis gigantea (Epidendroideae: Orchidaceae). African Journal of Biotechnology, 10(56), 11808–11816. Retrieved from

Oktavia, F., Kuswanhadi, K., Dinarty, D., Widodo, W., & Sudarsono, S. (2017). Genetic diversity and population structure of IRRDB 1981 and Wickham rubber germplasm based on EST-SSR. AGRIVITA Journal of Agricultural Science, 39(3), 239–251.

Ossowski, S., Schneeberger, K., Lucas-Lledó, J. I., Warthmann, N., Clark, R. M., Shaw, R. G., … Lynch, M. (2010). The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science, 327(5961), 92–94.

Pesik, A., Efendi, D., Novarianto, H., Dinarti, D., & Sudarsono, S. (2017). Development of SNAP markers based on nucleotide variability of WRKY genes in coconut and their validation using multiplex PCR. Biodiversitas, 18(2), 465–475.

Pornpienpakdee, P., Singhasurasak, R., Chaiyasap, P., Pichyangkura, R., Bunjongrat, R., Chadchawan, S., & Limpanavech, P. (2010). Improving the micropropagation efficiency of hybrid Dendrobium orchids with chitosan. Scientia Horticulturae, 124(4), 490–499.

Ru, Z., Lai, Y., Xu, C., & Li, L. (2013). Polyphenol Oxidase (PPO) in early stage of browning of Phalaenopsis leaf explants. Journal of Agricultural Science, 5(9), 57–64.

Samarfard, S., Kadir, M. A., Kadzimin, S. B., Ravanfar, S., & Saud, H. M. (2013). Genetic stability of in vitro multiplied Phalaenopsis gigantea protocorm-like bodies as affected by chitosan. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 177–183.

Samarfard, S., Kadir, M. A., Kadzimin, S. B., Saud, H. M., Ravanfar, S. A., & Danaee, M. (2014). In vitro propagation and detection of somaclonal variation in Phalaenopsis gigantea as affected by chitosan and thidiazuron combinations. HortScience, 49(1), 82–88. Retrieved from

Santarem, E. R., Pelissier, B., & Finer, J. J. (1997). Effect of explant orientation, pH, solidifying agent and wounding on initiation of soybean somatic embryos. In Vitro Cellular and Developmental Biology - Plant, 33(1), 13 – 19.

Shi, X., Yang, L., Yan, G., & Du, G. (2017). Medium pH between 5.5 and 7.5 has minimal effects on tissue culture of apple. HortScience, 52(3), 475-478. Retrieved from

Shimelis, D., Bantte, K., & Feyissa, T. (2015). Effects of polyvinyl pyrrolidone and activated charcoal to control effect of phenolic oxidation on in vitro culture establishment stage of micropropagation of sugarcane (Saccharum officinarum L.). Advances in Crop Science and Technology, 3(4), 10–13.

Soetopo, L., & Purnamaningsih, S. L. (2012). In vitro propagation of Dendrobium and Phalaenopsis through tissue culture for conservation. AGRIVITA Journal of Agricultural Science, 34(2), 115–126.

Sudarsono, S., Haristianita, M.D., Handini, A.S. & Sukma, D. (2017). Molecular marker development based on diversity of genes associated with pigment biosynthetic pathways to support breeding for novel colors in Phalaenopsis. Acta Horticulturae, 1167, 305-312. 10.17660/ActaHortic.2017.1167.44

Sukma, D., Elina, J., Giyanto, & Sudarsono, S. (2017). Disease resistance breeding of Phalaenopsis spp. for tropical environment and molecular marker development for plant selection. Acta Horticulturae, 1167, 237–244.

Sun, W. Y., Zhao, W. Y., Wang, Y. Y., Pei, C. C., & Yang, W. C. (2011). Natural variation of Pto and Fen genes and marker-assisted selection for resistance to bacterial speck in tomato. Agricultural Sciences in China, 10(6), 827–837.

Sutanto, A., Sukma, D., Hermanto, C., & Sudarsono. (2014). Isolation and characterization of Resistance Gene Analogue (RGA) from Fusarium resistant banana cultivars. Emirates Journal of Food and Agriculture, 26(6), 508–518.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.